0000000000199818

AUTHOR

Marco A. Giambra

Layout influence on microwave performance of graphene field effect transistors

The authors report on an in-depth statistical and parametrical investigation on the microwave performance of graphene FETs on sapphire substrate. The devices differ for the gate-drain/source distance and for the gate length, having kept instead the gate width constant. Microwave S -parameters have been measured for the different devices. Their results demonstrate that the cut-off frequency does not monotonically increase with the scaling of the device geometry and that it exists an optimal region in the gate-drain/source and gate-length space which maximises the microwave performance.

research product

Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits

Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition b…

research product

Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study

In this work, we report on a comparison among graphene field-effect transistors (GFETs) employing different dielectrics as gate layers to evaluate their microwave response. In particular, aluminum oxide (Al$_{2}$O$_{3}$), titanium oxide (TiO$_{2}$), and hafnium oxide (HfO$_{2}$) have been tested. GFETs have been fabricated on a single chip and a statistical analysis has been performed on a set of 24 devices for each type of oxide. Direct current and microwave measurements have been carried out on such GFETs and short circuit current gain and maximum available gain have been chosen as quality factors to evaluate their microwave performance. Our results show that all of the devices belonging …

research product

Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries

In this work, we report on the design, fabrication and characterization of Metal-Oxide Graphene Field-effect Transistors (MOGFETs) exploiting novel clamped gate geometries aimed at enhancing the device transconductance. The fabricated devices employ clamped metal contacts also for source and drain, as well as an optimized graphene meandered pattern for source contacting, in order to reduce parasitic resistance. Our experimental results demonstrate that MOGFETs with the proposed structure show improved high frequency performance, in terms of maximum available gain and transition frequency values, as a consequence of the higher equivalent transconductance obtained.

research product

Donor/Acceptor Heterojunction Organic Solar Cells

The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp

research product

Employing Microwave Graphene Field Effect Transistors for Infrared Radiation Detection

In this work, we investigate the possibility of employing graphene field effect transistors, specifically designed for microwave applications, as infrared detectors for telecom applications. Our devices have been fabricated on a sapphire substrate employing CVD-grown transferred graphene. The roles of both the gate dielectric and the DC bias conditions have been evaluated in order to maximize the infrared generated signal through an experimental investigation of the signal-to-noise ratio dependence on the transistor operating point.

research product