0000000000200480
AUTHOR
E. Gamberini
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN
© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
Searches for lepton number violating $K^+$ decays
The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.
Search for heavy neutral lepton production in K+ decays to positrons
A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.
Search for K+→ π+νν¯ at NA62
Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.
NA48/62 latest results
The NA62 experiment at the CERN SPS recorded in 2007 a large sample of K+ ? µ+?µ decays. A peak search in the missing mass spectrum of this decay is performed. In the absence of observed signal, the limits obtained on B(K+ ? µ+?h) and on the mixing matrix element |Uµ 4| are reported. The upgraded NA62 experiment started data taking in 2015. About 5×1011K+ decays have been recorded so far to measure the branching ratio of the K+ ? ?+?? decay. Preliminary results from the K+ ? ?+?? analysis based on about 5% of the 2016 statistics are reported.
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
The PROVENT-C19 registry: A study protocol for international multicenter SIAARTI registry on the use of prone positioning in mechanically ventilated patients with COVID-19 ARDS
Background The worldwide use of prone position (PP) for invasively ventilated patients with COVID-19 is progressively increasing from the first pandemic wave in everyday clinical practice. Among the suggested treatments for the management of ARDS patients, PP was recommended in the Surviving Sepsis Campaign COVID-19 guidelines as an adjuvant therapy for improving ventilation. In patients with severe classical ARDS, some authors reported that early application of prolonged PP sessions significantly decreases 28-day and 90-day mortality. Methods and analysis Since January 2021, the COVID19 Veneto ICU Network research group has developed and implemented nationally and internationally the “PRO…
Search for heavy neutral lepton production in K+ decays
A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.
Search for Lepton Number and Flavor Violation in K+ and π0 Decays
Searches for the lepton number violating $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$ decay and the lepton flavour violating $K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}$ and $\pi^{0} \rightarrow \mu^{-} e^{+}$ decays are reported using data collected by the NA62 experiment at CERN in $2017$-$2018$. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: $\mathcal{B}(K^{+}\rightarrow\pi^{-}\mu^{+}e^{+})<4.2\times 10^{-11}$, $\mathcal{B}(K^{+}\rightarrow\pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$ and $\mathcal{B}(\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times 10^{-10}$. These results improve by one order of magnitude over previous results for thes…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…