0000000000200744
AUTHOR
Joschua Hellemeier
Polarization-driven spin precession of mesospheric sodium atoms
We report experimental results on the first on-sky observation of atomic spin precession of mesospheric sodium driven by polarization modulation of a continuous-wave laser. The magnetic resonance was remotely detected from the ground by observing the enhancement of induced fluorescence when the driving frequency approached the precession frequency of sodium in the mesosphere, between 85 km and 100 km altitude. The experiment was performed at La Palma, and the uncertainty in the measured Larmor frequency ($\approx$260 kHz) corresponded to an error in the geomagnetic field of 0.4 mG. The results are consistent with geomagnetic field models and with the theory of light-atom interaction in the …
Simulations of continuous-wave sodium laser guide stars with polarization modulation at Larmor frequency
The return flux from a sodium laser guide star suffers, at large angles between the geomagnetic field and the laser beam, from the reduction in optical pumping due to spin-precession of sodium atoms. This detrimental effect can be mitigated by modulating the circular polarization of a continuous-wave laser beam in resonance with the Larmor frequency of sodium atoms in the mesosphere. We present an investigation based on numerical modeling to evaluate the brightness enhancement of a laser guide star with polarization modulation of a continuous-wave laser beam at different observatories.
Polarization-driven spin precession of mesospheric sodium atoms: publisher's note.
This publisher's note corrects an error in the author listing of Opt. Lett.43, 5825 (2018)OPLEDP0146-959210.1364/OL.43.005825.