0000000000200919

AUTHOR

Joachim Görres

showing 8 related works from this author

rp-process nucleosynthesis at extreme temperature and density conditions

1998

We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-c…

PhysicsNuclear reactionNuclear physicsNucleosynthesisNuclear TheoryNuclear structureGeneral Physics and Astronomyp-Nucleirp-processNuclear ExperimentNucleonISOLTRAPp-process
researchProduct

The astrophysical implications of low-energy resonances in 22Ne + α

1993

Abstract The 22 Ne( 6 Li, d) α-transfer reaction has been used to search for α-unbound levels in 26 Mg of importance for resonant α-capture on 22 Ne in stellar helium burning. To determine the resonance strengths of the observed states the 22 Ne(α, n) 25 Mg reaction was investigated in the energy range between 600 and 900 keV. One resonance was identified and its strength determined. The astrophysical implications of the present results are discussed.

Nuclear reactionPhysicsNuclear physicsNuclear and High Energy PhysicsRange (particle radiation)Low energychemistryResonancechemistry.chemical_elementAtomic physicsHeliumNuclear Physics A
researchProduct

Neutron transmission measurements at nELBE

2020

International Conference on Nuclear Data for Science and Technology, ND 2019, Bejing, China, 19 May 2019 - 24 May 2019; The European physical journal / Web of Conferences 239, 01006 (2020). doi:10.1051/epjconf/202023901006

Astrophysics::High Energy Astrophysical PhenomenaQC1-999FluxNeutron transmission53001 natural sciences238UNuclear physicsXe0103 physical sciencesNeutronddc:530High pressure gas010306 general physicsPhysicsHe010308 nuclear & particles physicsNePhysicsOPtnELBE time of flight faciltiyneutron total cross sectionstransmission measurementNatBar (unit)
researchProduct

Study of the β-delayed neutron decay of 17C and 18C

1995

Abstract The β-delayed neutron decays of 17C and 18C have been studied using a time-of-flight array with a high detection efficiency. The 17C and 18C ions were produced by fragmentation of an E A = 69 MeV 22Ne beam. Transitions to several neutron unbound states have been observed for the first time for both decays with total branching ratios of (10.8 ± 2.2)% and (21.4 ± 4.4)%. Half-lives of 193 ± 6 ms and 92 ± 2 ms were found for 17C and 18C, respectively. The results are compared with previous measurements of the β-decays and with shell-model calculations.

PhysicsNuclear and High Energy PhysicsFragmentation (mass spectrometry)NeutronAtomic physicsDelayed neutronIonNuclear Physics A
researchProduct

Nuclear physics far from stability and explosive nucleosynthesis processes

1998

In this paper, we discuss the astrophysically relevant nuclear-physics input for a selected set of explosive nucleosynthesis scenarios leading to rapid protonand neutron-capture processes. Observables (like,e.g., luminosity curves or abundance distributions) witness the interplay between nuclear-structure aspects far from β-stability and the appropriate astrophysical environments, and can give guidance to and constraints on stellar conditions and/or key features of reaction and decay data for radioactive isotopes.

PhysicsNuclear physicsLuminosity (scattering theory)Stellar nucleosynthesisExplosive materialNucleosynthesisAstrophysics::Solar and Stellar AstrophysicsObservableAstrophysicsNuclear ExperimentKey featuresStability (probability)Il Nuovo Cimento A
researchProduct

The endpoint of the rp-process

1997

Abstract The endpoint of rp-process nucleosynthesis in X-ray bursts determines the fuel consumption, the energy generation, and the abundance pattern of the produced nuclei. To investigate the time structure of rp-process nucleosynthesis, we used a nuclear reaction network including nuclei from H to Sn. We found that if 2p-capture reactions are included, the synthesis of nuclei heavier than Kr proceeds faster than previously thought. Therefore, in most X-ray bursts large amounts of nuclei in the A=80–100 region are expected to be produced. With an escape factor of about 1%, X-ray bursts could account for the large observed solar system abundances of the light p-nuclei like 92 Mo and 96 Ru t…

Reaction rateNuclear physicsPhysicsNuclear reactionNuclear and High Energy PhysicsSolar SystemAbundance (chemistry)NucleosynthesisAstrophysicsrp-processTime structure
researchProduct

Reaction Rates in the RP-Process and Nucleosynthesis in Novae

1986

Nuclear structure information available on proton rich unstable nuclei were used to evaluate thermonuclear reaction rates in the rp-process in explosive hydrogen burning. These rates were applied in a systematic analysis for a variety of temperature conditions, appropriate to nova explosions, to study nucleosynthesis for isotopes of Ne Na Mg Al Si. The results are discussed in comparison with recent observations of elemental abundances in nova ejecta.

Reaction ratePhysicsIsotopeNucleosynthesisNuclear fusionWhite dwarfNova (laser)Astrophysicsrp-processEjecta
researchProduct

The neutron long counter NERO for studies of neutron emission in the r-process

2010

Abstract The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β -delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β -delay implantation station, so that β decays and β -delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β -delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

PhysicsNuclear and High Energy PhysicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNeutron stimulated emission computed tomographyNuclear physicsPrompt neutronNeutron cross sectionr-processNeutronNuclear ExperimentInstrumentationDelayed neutronNeutron activationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct