0000000000201033

AUTHOR

Philippe Berben

showing 2 related works from this author

In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration

2019

The availability of in vitro tools that are constructed on the basis of a detailed knowledge of key aspects of gastrointestinal (GI) physiology and their impact on formulation performance and subsequent drug release behaviour is fundamental to the success and efficiency of oral drug product development. Over the last six years, the development and optimization of improved, biorelevant in vitro tools has been a cornerstone of the IMI OrBiTo (Oral Biopharmaceutics Tools) project. By bringing together key industry and academic partners, and by linking tool development and optimization to human studies to understand behaviour at the formulation/GI tract interface, the collaboration has enabled …

Process managementUPPER GASTROINTESTINAL-TRACTAdministration OralPharmaceutical Science02 engineering and technologyWATER DIFFUSIVITYModels Biological030226 pharmacology & pharmacyDosage formBiopharmaceutics03 medical and health sciences0302 clinical medicineDISINTEGRATION TESTERHumansPharmacology & PharmacyWEAK BASESIntersectoral CollaborationBiologyTEST DEVICEDosage FormsALBENDAZOLE CONCENTRATIONSScience & TechnologyHuman studiesbusiness.industryBiopharmaceuticsFED STATE CONDITIONSGeneral Medicine021001 nanoscience & nanotechnologyRELEASE TABLETSGastrointestinal TractPharmaceutical PreparationsGastrointestinal AbsorptionGeneral partnershipSOLID DISPERSIONNew product developmentDrug releaseIntersectoral Collaboration0210 nano-technologybusinessLife Sciences & BiomedicineUPPER SMALL-INTESTINEOral retinoidForecastingBiotechnology
researchProduct

Validation of Dissolution Testing with Biorelevant Media: An OrBiTo Study.

2017

Dissolution testing with biorelevant media has become widespread in the pharmaceutical industry as a means of better understanding how drugs and formulations behave in the gastrointestinal tract. Until now, however, there have been few attempts to gauge the reproducibility of results obtained with these methods. The aim of this study was to determine the interlaboratory reproducibility of biorelevant dissolution testing, using the paddle apparatus (USP 2). Thirteen industrial and three academic laboratories participated in this study. All laboratories were provided with standard protocols for running the tests: dissolution in FaSSGF to simulate release in the stomach, dissolution in a singl…

IndolesInterlaboratory reproducibilityChemistry PharmaceuticalPhenylcarbamatesPharmaceutical ScienceIbuprofen02 engineering and technologyPharmacology030226 pharmacology & pharmacyBiopharmaceuticsTosyl Compounds03 medical and health sciences0302 clinical medicineDrug DiscoveryIntestine SmallDissolution testingTransfer modelDissolutionSulfonamidesChromatographyChemistryReproducibility of ResultsHydrogen-Ion Concentration021001 nanoscience & nanotechnologyDrug LiberationSolubilityGastric MucosaMolecular Medicine0210 nano-technologyTabletsMolecular pharmaceutics
researchProduct