0000000000201268

AUTHOR

Simon A. Bretschneider

showing 4 related works from this author

Removal of Surface Oxygen Vacancies Increases Conductance Through TiO(2) Thin Films for Perovskite Solar Cells

2019

[Image: see text] We report that UV–ozone treatment of TiO(2) anatase thin films is an efficient method to increase the conductance through the film by more than 2 orders of magnitude. The increase in conductance is quantified via conductive scanning force microscopy on freshly annealed and UV–ozone-treated TiO(2) anatase thin films on fluorine-doped tin oxide substrates. The increased conductance of TiO(2) anatase thin films results in a 2% increase of the average power conversion efficiency (PCE) of methylammonium lead iodide-based perovskite solar cells. PCE values up to 19.5% for mesoporous solar cells are realized. The additional UV–ozone treatment results in a reduced number of oxygen…

AnataseMaterials sciencetechnology industry and agriculturechemistry.chemical_elementConductance02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyTin oxide01 natural sciencesOxygen0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringchemistryX-ray photoelectron spectroscopyCharge carrierPhysical and Theoretical ChemistryThin film0210 nano-technologyPerovskite (structure)
researchProduct

Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films

2016

Methylammonium lead halide perovskites (MAPbI3) are very sensitive to humid environments. We performed in situ scanning force microscopy and in situ X-ray diffraction measurements on MAPbI3 films to track changes in the film morphology and crystal structure upon repeated exposure to a high relative humidity environment (80%). We found that the appearance of monohydrate (MAPbI3·H2O) Bragg reflections coincided with the appearance of additional grain boundaries. Prolonging the exposure time to humidity induced more grain boundaries and steps in the MAPbI3 films, and the peak intensities of the monohydrate MAPbI3·H2O increased. The monohydrate was not stable under dry atmosphere and could be r…

Materials scienceAnalytical chemistryHumidity02 engineering and technologyCrystal structureMethylammonium lead halide010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtmospherechemistry.chemical_compoundCrystallographyHysteresisGeneral EnergychemistryGrain boundaryRelative humidityPhysical and Theoretical Chemistry0210 nano-technologyPerovskite (structure)The Journal of Physical Chemistry C
researchProduct

Local Time-Dependent Charging in a Perovskite Solar Cell

2016

Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at intern…

Kelvin probe force microscopeMaterials scienceCharge densityPerovskite solar cell02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpace charge0104 chemical sciencesScanning probe microscopyHysteresisDepletion regionChemical physicsGeneral Materials ScienceAtomic physics0210 nano-technologyPerovskite (structure)ACS Applied Materials & Interfaces
researchProduct

Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

2016

Methylammonium lead iodide (MAPbI3) perovskite shows an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with X-ray diffraction, the preferred domain orientation is suggested to be the a1–a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film t…

Diffractionchemistry.chemical_classificationPhase transitionMaterials scienceFerroelasticityIodide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral EnergyPiezoresponse force microscopychemistryChemical physicsTexture (crystalline)Physical and Theoretical Chemistry0210 nano-technologyNanoscopic scalePerovskite (structure)The Journal of Physical Chemistry C
researchProduct