0000000000204918

AUTHOR

Francisco J. Rodríguez-cortés

0000-0002-2152-8619

showing 4 related works from this author

Testing for local structure in spatiotemporal point pattern data

2017

The detection of clustering structure in a point pattern is one of the main focuses of attention in spatiotemporal data mining. Indeed, statistical tools for clustering detection and identification of individual events belonging to clusters are welcome in epidemiology and seismology. Local second-order characteristics provide information on how an event relates to nearby events. In this work, we extend local indicators of spatial association (known as LISA functions) to the spatiotemporal context (which will be then called LISTA functions). These functions are then used to build local tests of clustering to analyse differences in local spatiotemporal structures. We present a simulation stud…

Statistics and ProbabilityStructure (mathematical logic)010504 meteorology & atmospheric sciencesEvent (computing)Ecological ModelingAssociation (object-oriented programming)Context (language use)computer.software_genre01 natural sciences010104 statistics & probabilityIdentification (information)Point (geometry)Data mining0101 mathematicsCluster analysiscomputer0105 earth and related environmental sciencesStatistical hypothesis testingMathematicsEnvironmetrics
researchProduct

Weighted local second-order statistics for complex spatio-temporal point processes

2019

Spatial, temporal, and spatio-temporal point processes, and in particular Poisson processes, are stochastic processes that are largely used to describe and model the distribution of a wealth of real phenomena. When a model is fitted to a set of random points, observed in a given multidimensional space, diagnostic measures are necessary to assess the goodness-of-fit and to evaluate the ability of that model to describe the random point pattern behaviour. The main problem when dealing with residual analysis for point processes is to find a correct definition of residuals. Diagnostics of goodness-of-fit in the theory of point processes are often considered through the transformation of data in…

spatio-temporal point processes diagnostics K-function weighted second-order statistics
researchProduct

Some properties of local weighted second-order statistics for spatio-temporal point processes

2019

Diagnostics of goodness-of-fit in the theory of point processes are often considered through the transformation of data into residuals as a result of a thinning or a rescaling procedure. We alternatively consider here second-order statistics coming from weighted measures. Motivated by Adelfio and Schoenberg (Ann Inst Stat Math 61(4):929–948, 2009) for the temporal and spatial cases, we consider an extension to the spatio-temporal context in addition to focussing on local characteristics. In particular, our proposed method assesses goodness-of-fit of spatio-temporal models by using local weighted second-order statistics, computed after weighting the contribution of each observed point by the…

Environmental Engineeringsecond-order characteristics010504 meteorology & atmospheric sciencesComputer science0208 environmental biotechnologyresidual analysisInverseComputational intelligence02 engineering and technology01 natural sciencesPoint processSecond order statisticslocal propertiesEnvironmental ChemistryApplied mathematicsSafety Risk Reliability and Quality0105 earth and related environmental sciencesGeneral Environmental ScienceWater Science and TechnologyHomogeneity (statistics)Intensity function020801 environmental engineeringWeightingK-functionspatio-temporal point patternsSettore SECS-S/01 - StatisticaK-function Local properties Residual analysis Second-order characteristics Spatio-temporal point patternsStochastic Environmental Research and Risk Assessment
researchProduct

Spatio‐temporal classification in point patterns under the presence of clutter

2019

We consider the problem of detection of features in the presence of clutter for spatio-temporal point patterns. In previous studies, related to the spatial context, Kth nearest-neighbor distances to classify points between clutter and features. In particular, a mixture of distributions whose parameters were estimated using an expectation-maximization algorithm. This paper extends this methodology to the spatio-temporal context by considering the properties of the spatio-temporal Kth nearest-neighbor distances. For this purpose, we make use of a couple of spatio-temporal distances, which are based on the Euclidean and the maximum norms. We show close forms for the probability distributions o…

Statistics and Probability010504 meteorology & atmospheric sciencesComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONContext (language use)01 natural sciences010104 statistics & probabilitySpatio-temporalpoint patternsClutterExpectation–maximization algorithmEuclidean geometryEarthquakesPoint (geometry)clutter earthquakes EM algorithm features mixtures nearest‐neighbor distances spatio‐temporal point patterns0101 mathematicsEM algorithmFeatures0105 earth and related environmental sciencesspatio-temporal point patternSpatial contextual awarenessEcological Modelingmixturenearest-neighbor distanceComputingMethodologies_PATTERNRECOGNITIONearthquakeMixturesProbability distributionClutterfeatureSettore SECS-S/01 - StatisticaclutterNearest-neighbor distancesAlgorithmEnvironmetrics
researchProduct