0000000000205655

AUTHOR

Saif A. Haque

Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship.

research product

State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films

We describe a novel titanium phthalocyanine that shows no aggregation when anchored to nanocrystalline TiO2 films through its axial carboxylated ligand without the use of co-adsorbents; state selective electron injection into the TiO2 is demonstrated, resulting in efficient photocurrent generation in dye sensitised photoelectrochemical solar cells. Palomares Gil, Emilio J, epagil@alumni.uv.es

research product

Solid film versus solution-phase charge-recombination dynamics of exTTF-bridge-C60 dyads.

The charge-recombination dynamics of two exTTF-C 6 0 dyads (exTTF=9,10-bis(l,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C 6 0 ) moieties. In solution, photoexcitation of the nonconjugated dyad C 6 0 -BN-exTTF (1) (BN=1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C 6 0 -TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 μs, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad.…

research product

The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings

We investigate the effect of a thin alumina coating of nanocrystalline TiO2 films on recombination dynamics of dye-sensitized solar cells. Both coated and uncoated cells were measured by a combination of techniques: transient absorption spectroscopy, electrochemical impedance spectroscopy, and open-circuit voltage decay. It is found that the alumina barrier reduces the recombination of photoinjected electrons to both dye cations and the oxidized redox couple. It is proposed that this observed retardation can be attributed primarily to two effects: almost complete passivation of surface trap states in TiO2 that are able to inject electrons to acceptor species, and slowing down by a factor of…

research product