0000000000205817

AUTHOR

Marie Vincent

showing 9 related works from this author

Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenital

2022

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index pati…

musculoskeletal diseasesArtrogriposi múltiple congènitaSettore BIO/18 - GENETICAhuman geneticsneuromuscular diseasesGenomicsBiologyCONTRACTURESCLASSIFICATIONdiseasessymbols.namesakeDiagnòsticGene mappingarthrogryposis multiplex congenitaExome SequencingOF-FUNCTION MUTATIONSGeneticsMedicine and Health SciencesgenomicsHumansGenetics (clinical)Exome sequencingArthrogryposisSanger sequencingGeneticsArthrogryposis multiplex congenitaGenetic heterogeneitySPINAL MUSCULAR-ATROPHYProteinsnervous system malformationsDYSTROPHYDisease gene identificationGENEHuman geneticsPedigreeETIOLOGYPhenotypesymbolsneuromuscularGenèticaTranscription Factors
researchProduct

Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants

2019

Purpose: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. Methods: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. Results: The number of rare likely deleterious variants in functionally intolerant genes (“other hits”) correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with thei…

MaleParents0301 basic medicineProbandNeuronalGenetic Carrier Screening16p11.2 deletion030105 genetics & heredityCognitionFamily historyNeural Cell Adhesion MoleculesGenetics (clinical)Exome sequencingSequence DeletionGeneticsGenetic Carrier ScreeningPhenotypePenetrancePedigreePhenotypeAutistic Disorder/genetics; Autistic Disorder/physiopathology; Cell Adhesion Molecules Neuronal/genetics; Chromosomes Human Pair 16/genetics; Cognition/physiology; DNA Copy Number Variations/genetics; Female; Gene Expression Regulation/genetics; Genetic Background; Genetic Carrier Screening; Humans; Male; Methyltransferases/genetics; Nerve Tissue Proteins/genetics; Parents; Pedigree; Phenotype; Proteins/genetics; Sequence Deletion/genetics; Siblings; 16p11.2 deletion; CNV; autism; modifier; phenotypic variabilityFemaleGenetic BackgroundHumanDNA Copy Number VariationsCell Adhesion Molecules NeuronalCNVautismNerve Tissue ProteinsBiologyChromosomesArticle03 medical and health sciencesmental disordersmedicineHumansAutistic DisorderBiologyGenemodifierPair 16SiblingsCalcium-Binding ProteinsProteinsMethyltransferasesmedicine.disease16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Genetics (clinical)Cytoskeletal Proteins030104 developmental biologyGene Expression Regulation[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAutismphenotypic variabilityHuman medicine16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Autistic Disorder; Cell Adhesion Molecules Neuronal; Chromosomes Human Pair 16; Cognition; DNA Copy Number Variations; Female; Gene Expression Regulation; Genetic Background; Humans; Male; Methyltransferases; Nerve Tissue Proteins; Parents; Pedigree; Phenotype; Proteins; Sequence Deletion; Siblings; Genetic Carrier ScreeningCell Adhesion MoleculesChromosomes Human Pair 16Transcription FactorsGenetics in Medicine
researchProduct

Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development

2018

AbstractDe novo germline mutations in the RNA helicase DDX3X account for 1-3% of unexplained intellectual disability (ID) cases in females, and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here we use human and mouse genetics, and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n=78), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes.…

GeneticsPathogenesisGermline mutationNeurogenesisPolymicrogyriamedicineMissense mutationTranslation (biology)BiologyDDX3Xmedicine.diseaseRNA Helicase A
researchProduct

Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

2020

Summary De novo germline mutations in the RNA helicase DDX3X account for 1%–3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcom…

0301 basic medicineMaleNeurogenesisMutation MissenseBiologyPathogenesisDEAD-box RNA Helicases03 medical and health sciencesMice0302 clinical medicineGermline mutationStress granuleCell Line TumorPolymicrogyriamedicineMissense mutationAnimalsHumansCells CulturedGeneticsCerebral CortexGeneral NeuroscienceNeurogenesismedicine.diseaseRNA Helicase AMice Inbred C57BL030104 developmental biologyNeurodevelopmental DisordersRNAFemaleDDX3X030217 neurology & neurosurgeryNeuron
researchProduct

Rare variants in the genetic background modulate the expressivity of neurodevelopmental disorders

2018

AbstractPurposeTo assess the contribution of rare variants in the genetic background towards variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive mutations.MethodsWe analyzed quantitative clinical information, exome-sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated mutations.ResultsThe number of rare secondary mutations in functionally intolerant genes (second-hits) correlated with the expressivity of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in probands with autism carrying gene-disruptive mutations (n=184, p=0.03) compared to …

GeneticsProband0303 health sciencesCandidate geneMutationGenetic heterogeneityDiseaseBiologymedicine.diseasemedicine.disease_cause03 medical and health sciences0302 clinical medicinemedicineAutismExpressivity (genetics)Family history030217 neurology & neurosurgery030304 developmental biology
researchProduct

Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disabilit…

2019

International audience; Purpose Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. Methods Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individu…

MaleDevelopmental DisabilitiesIntellectual disabilitycholesterol pathwayWhole Exome Sequencingchemistry.chemical_compoundMissense mutationAge of OnsetChildIntramolecular TransferasesGenetics (clinical)Exome sequencingGeneticsSanger sequencing0303 health sciencesbiologyLanosterol030305 genetics & heredityLSS3. Good healthPedigreeCholesterolPhenotypeintellectual disabilityChild PreschoolAllelic ImbalanceCongenital cataractssymbolsFemaleSqualeneearly-onset epileptic encephalopathy03 medical and health sciencessymbols.namesakeLanosterolCholesterol pathwayExome SequencingmedicineHumans030304 developmental biologyEpilepsyInfantAlopeciaalopeciamedicine.diseaseEarly-onset epileptic encephalopathychemistryMutationbiology.proteinHypotrichosis[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology[SDV.MHEP.DERM]Life Sciences [q-bio]/Human health and pathology/DermatologyLanosterol synthase
researchProduct

Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing.

2017

Postzygotic activating mutations of PIK3CA cause a wide range of mosaic disorders collectively referred to as PIK3CA-related overgrowth spectrum (PROS). We describe the diagnostic yield and characteristics of PIK3CA sequencing in PROS. We performed ultradeep next-generation sequencing (NGS) of PIK3CA in various tissues from 162 patients referred to our clinical laboratory and assessed diagnostic yield by phenotype and tissue tested. We identified disease-causing mutations in 66.7% (108/162) of patients, with mutant allele levels as low as 1%. The diagnostic rate was higher (74%) in syndromic than in isolated cases (35.5%; P = 9.03 × 10−5). We identified 40 different mutations and found stro…

0301 basic medicineAdultMalePathologymedicine.medical_specialtyAdolescentGenotypeClass I Phosphatidylinositol 3-KinasesPrenatal diagnosisBioinformaticsmedicine.disease_causeDNA sequencing03 medical and health sciencesYoung Adult0302 clinical medicinePrenatal DiagnosisGenotypemedicineHumansGenetic Predisposition to DiseaseGenetic TestingAlleleChildGenetics (clinical)AllelesGenetic Association StudiesGrowth DisordersGenetic testingMutationmedicine.diagnostic_testbusiness.industryMosaicismInfant NewbornDisease ManagementHigh-Throughput Nucleotide SequencingInfantSequence Analysis DNAPhenotype030104 developmental biologyPhenotypeAmino Acid SubstitutionChild PreschoolMutationAllelic heterogeneityFemalebusiness030217 neurology & neurosurgeryGenetics in medicine : official journal of the American College of Medical Genetics
researchProduct

Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders

2022

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes which can share significant overlap amongst different conditions. In this study we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of…

DNA methylationclinical diagnostics.SyndromeDNA methylation clinical diagnostics episignatures neurodevelopmental syndromesneurodevelopmental syndromesEpigenesis GeneticNeurodevelopmental DisordersGeneticsHumansCpG IslandsDNA IntergenicepisignaturesEpisignatureGenetics (clinical)clinical diagnostics
researchProduct

Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU

2017

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, an…

[SDV.GEN]Life Sciences [q-bio]/GeneticsRepressor Proteins/geneticsddc:618Neurodevelopmental Disorders/geneticsHeterogeneous-Nuclear Ribonucleoproteins/geneticsHeterogeneous-Nuclear RibonucleoproteinsChromosomesRepressor ProteinsPhenotypeChromosomes Human Pair 1Neurodevelopmental DisordersMutationGeneticsPair 1HumansGenetics(clinical)Chromosome Deletion[ SDV.GEN ] Life Sciences [q-bio]/GeneticsOriginal InvestigationHuman
researchProduct