0000000000210893

AUTHOR

Santo Previti

0000-0001-8473-3321

Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents

Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50 = 5.29 µM), coupled with a lack of cytotoxicity towards mammalian cells (TC50>100 µM).

research product

Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense

Curcumin and genistein are two natural products obtained from Curcuma longa L. and soybeans, endowed with many biological properties. Within the last years they were shown to possess also a promising antitrypanosomal activity. In the present paper, we investigated the activity of both curcumin and genistein against rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense; drug combination studies, according to Chou and Talalay method, allowed us to demonstrate a potent synergistic effect for the combination curcumin-genistein. As a matter of fact, with our experiments we observed that the combination index of curcumin-genistein is < 1 for the reduction from 10 to 90% of rhode…

research product

Synthesis and biological evaluation of novel peptidomimetics as rhodesain inhibitors

Novel rhodesain inhibitors were developed by combining an enantiomerically pure 3-bromoisoxazoline warhead with a 1,4-benzodiazepine scaffold as specific recognition moiety. All compounds were proven to inhibit rhodesain with Ki values in the low-micromolar range. Their activity towards rhodesain was found to be coupled to an in vitro antitrypanosomal activity, with IC50 values ranging from the mid-micromolar to a low-micromolar value for the most active rhodesain inhibitor (R,S,S)-3. All compounds showed a good selectivity against the target enzyme since all of them were proven to be poor inhibitors of human cathepsin L. Novel rhodesain inhibitors were developed by combining an enantiomeri…

research product

Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation.

Novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation were developed; some of them possess K(i) values in the micromolar range. We studied the structure-activity relationship of these derivatives and we performed docking studies, which allowed us to find out the key interactions established by the inhibitors with the target enzyme. Biological results indicate that the nature of the P2 and P3 substituents and their binding to the S2/S3 pockets is strictly interdependent.

research product

Peptidyl Vinyl Ketone Irreversible Inhibitors of Rhodesain: Modifications of the P2 Fragment.

In this paper, we report the design, synthesis and biological investigation of a series of peptidyl vinyl ketones obtained by modifying the P2 fragment of previously reported highly potent inhibitors of rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense. Investigation of the structure-activity relationship led us to identify new rhodesain inhibitors endowed with an improved selectivity profile (a selectivity index of up to 22 000 towards the target enzyme), and/or an improved antitrypanosomal activity in the sub-micromolar range.

research product

Drug Synergism: Studies of Combination of RK-52 and Curcumin against Rhodesain of Trypanosoma brucei rhodesiense

Rhodesain is an enzyme essential for the life of Trypanosoma brucei rhodesiense, a parasite causing a rapid-onset form of Human African Trypanosomiasis. RK-52 is a synthetic inhibitor of rhodesain,...

research product

Evaluation of curcumin irreversibility

Dear Editor,We would like to reply to the letter to the Editor of Steverding (2018) on our research article “Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma bruc...

research product

Development of Novel Benzodiazepine-Based Peptidomimetics as Inhibitors of Rhodesain from Trypanosoma brucei rhodesiense.

Starting from the reversible rhodesain inhibitors 1 a-c, which have Ki values towards the target protease in the low-micromolar range, we have designed a series of peptidomimetics, 2 a-g, that contain a benzodiazepine scaffold as a β-turn mimetic; they are characterized by a specific peptide sequence for the inhibition of rhodesain. Considering that irreversible inhibition is strongly desirable in the case of a parasitic target, a vinyl ester moiety acting as Michael-acceptor was introduced as the warhead; this portion was functionalized in order to evaluate the size of corresponding enzyme pocket that could accommodate this substituent. With this investigation, we identified an irreversibl…

research product

Optimization Strategy of Novel Peptide-Based Michael Acceptors for the Treatment of Human African Trypanosomiasis

This paper describes an optimization strategy of the highly active vinyl ketone 3 which was recognized as a strong inhibitor of rhodesain of Trypanosoma brucei rhodesiense, endowed with a ksecond v...

research product

Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs)

This paper describes the development of a class of peptide-based inhibitors as novel antitrypanosomal and antimalarial agents. The inhibitors are based on a characteristic peptide sequence for the inhibition of the cysteine proteases rhodesain of Trypanosoma brucei rhodesiense and falcipain-2 of Plasmodium falciparum. We exploited the reactivity of novel unsaturated electrophilic functions such as vinyl-sulfones, -ketones, -esters, and -nitriles. The Michael acceptors inhibited both rhodesain and falcipain-2, at nanomolar and micromolar levels, respectively. In particular, the vinyl ketone 3b has emerged as a potent rhodesain inhibitor (k2nd = 67 × 106 M-1 min-1), endowed with a picomolar b…

research product

Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine pro…

research product