0000000000211035

AUTHOR

Brian Shuve

Search for a Dark Leptophilic Scalar in e(+) e(-) Collisions

Many scenarios of physics beyond the standard model predict the existence of new gauge singlets, which might be substantially lighter than the weak scale. The experimental constraints on additional scalars with masses in the MeV to GeV range could be significantly weakened if they interact predominantly with leptons rather than quarks. At an e+e- collider, such a leptophilic scalar (φL) would be produced predominantly through radiation from a τ lepton. We report herein a search for e+e-→τ+τ-φL, φL→ℓ+ℓ- (ℓ=e, μ) using data collected by the BABAR experiment at SLAC. No significant signal is observed, and we set limits on the φL coupling to leptons in the range 0.04<mφL<7.0 GeV. These bounds s…

research product

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

research product

Long-lived particles at the energy frontier: the MATHUSLA physics case

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …

research product

Search for Rare or Forbidden Decays of the D0 Meson

We present a search for nine lepton-number-violating and three lepton-flavor-violating neutral charm decays of the type D^{0}→h^{'-}h^{-}l^{'+}l^{+} and D^{0}→h^{'-}h^{+}l^{'±}l^{∓}, where h and h^{'} represent a K or π meson and l and l^{'} an electron or muon. The analysis is based on 468  fb^{-1} of e^{+}e^{-} annihilation data collected at or close to the ϒ(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the twelve modes, and we establish 90% confidence level upper limits on the branching fractions in the range (1.0-30.6)×10^{-7}. The limits are between 1 and 3 orders of magnitude more stringent than previou…

research product

Precision Measurement of the Ratio B(ϒ(3S)→τ+τ−)/B(ϒ(3S)→μ+μ−)

We report on a precision measurement of the ratio ${\cal R}_{\tau\mu}^{\Upsilon(3S)} = {\cal B}(\Upsilon(3S)\to\tau^+\tau^-)/{\cal B}(\Upsilon(3S)\to\mu^+\mu^-)$ using data collected with the BaBar detector at the SLAC PEP-II $e^+e^-$ collider. The measurement is based on a 28 fb$^{-1}$ data sample collected at a center-of-mass energy of 10.355 GeV corresponding to a sample of 122 million $\Upsilon(3S)$ mesons. The ratio is measured to be ${\cal R}_{\tau\mu}^{\Upsilon(3S)} = 0.966 \pm 0.008_\mathrm{stat} \pm 0.014_\mathrm{syst}$ and is in agreement with the Standard Model prediction of 0.9948 within 2 standard deviations. The uncertainty in ${\cal R}_{\tau\mu}^{\Upsilon(3S)}$ is almost an o…

research product