0000000000211307
AUTHOR
Carsten Bergmann
Mutation ofPOC1Bin a Severe Syndromic Retinal Ciliopathy
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next-generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in …
Novel deletion in 11p15.5 imprinting center region 1 in a patient with Beckwith-Wiedemann syndrome provides insight into distal enhancer regulation and tumorigenesis.
Background Beckwith–Wiedemann syndrome (BWS) is an early-onset overgrowth disorder with a high risk for embryonal tumors. It is mainly caused by dysregulation of imprinted genes on chromosome 11p15.5; however, the driving forces in the development of tumors are not fully understood. Procedure We report on a female patient presenting with macrosomia, macroglossia, organomegaly and extensive bilateral nephroblastomatosis. Adjuvant chemotherapy was initiated; however, the patient developed hepatoblastoma and Wilms tumor at 5 and 12 months of age, respectively. Subsequent radiofrequency ablation of the liver tumor and partial nephrectomy followed by consolidation therapy achieved complete remis…
Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA
Contains fulltext : 248375.pdf (Publisher’s version ) (Closed access) BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na(+)-Cl(-) cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in th…