0000000000215171
AUTHOR
Nicola Pompeo
Microwave Properties of Nb/PdNi/Nb Trilayers
We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2 GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers, grown by UHV dc magnetron sputtering, composed by Nb layers of nominal thickness $d_S$=15 nm, and a ferromagnetic PdNi layer of thickness $d_F$= 1, 2, 8 and 9 nm. We focus on the vortex state. Magnetic fields up to $H_{c2}$ were applied. The microwave resistivity at fixed $H/H_{c2}$ increases with $d_F$, eventually exceeding the Bardeen Stephen flux flow value.
Vortex motion in Nb/PdNi/Nb trilayers: new aspects in the flux flow state
We study the dynamics of vortex lines in Supercondutor/Ferromagnet/Superconductor (SFS) heterostructures at microwave frequencies. We have employed swept-frequency, Corbino-disk and resonant, dielectric-resonator techniques to obtain the field and temperature dependence of the vortex-state parameters. We concentrate here on the genuine flux-flow resistivity $\rho_{ff}$, that we access at subcritical currents using a sufficiently high driving frequency. We find that $\rho_{ff}$ does not follow the well-known Bardeen-Stephen model. Instead, it is well described by a full time-dependent Ginzburg-Landau expression at very thin F layer thickness, but changes to a previously unreported field-depe…