0000000000215323

AUTHOR

L. Laubier

showing 2 related works from this author

The ANTARES optical module

2001

The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.

Nuclear and High Energy PhysicsPhotomultiplierAstrophysics and AstronomyPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeFOS: Physical sciencesAstrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsOptical Moduleneutrino astronomyHigh Energy Physics - Experiment (hep-ex)deep sea detector; neutrino astronomyMediterranean sea0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]14. Life underwaterElectronicsDetectors and Experimental Techniques010306 general physicsInstrumentationRemote sensingPhysics010308 nuclear & particles physicsDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsNeutrino detectordeep sea detectorFísica nuclearNeutrino astronomy
researchProduct

Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope

2005

The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.

Nuclear and High Energy PhysicsPhotomultiplierPhysics - Instrumentation and DetectorsNeutrino detectionNeutrino telescopeFOS: Physical sciences01 natural scienceslarge area photosensor hemispherical photomultiplier neutrino detectionNuclear physicsOpticsIntensive Phase0103 physical sciences14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationAstroparticle physicsPhysics010308 nuclear & particles physicsbusiness.industryHemispherical photomultiplierInstrumentation and Detectors (physics.ins-det)Large area photosensorGlass spheresNeutrino detector95.55.Vj; 85.60.HaFísica nuclearbusinesshemispherical photomultiplier; large area photosensor; neutrino detection
researchProduct