0000000000216933

AUTHOR

Oliver Schlenczek

0000-0001-7247-465x

showing 3 related works from this author

Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland

2017

AbstractDuring the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond …

Atmospheric Science010504 meteorology & atmospheric sciencesAtmospheric sciences01 natural sciencesPhysics::Geophysics010309 opticsDiamond dustSea ice growth processesCloud microphysics0103 physical sciencesIce fogPrecipitationCrystal habitComplex terrainPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesIce crystalsIce particlesSurface observations13. Climate actionIn situ atmospheric observationsIce nucleusParticleAstrophysics::Earth and Planetary Astrophysics/dk/atira/pure/subjectarea/asjc/1900/1902GeologyJournal of Applied Meteorology and Climatology
researchProduct

Mixed-Phase Clouds: Progress and Challenges

2017

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represe…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryEarth scienceCloud physicsCloud computing010502 geochemistry & geophysicsOceanographyNumerical weather prediction01 natural sciencesTroposphere13. Climate actionInternational Satellite Cloud Climatology Projectddc:550Clouds; Aircraft observations; Lidars/Lidar observations; Microwave observations; Radars/Radar observations; Climate modelsEnvironmental scienceClimate modelPrecipitationbusinessWater vaporAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Holographic Observations of Centimeter-Scale Nonuniformities within Marine Stratocumulus Clouds

2020

Abstract Data collected with a holographic instrument [Holographic Detector for Clouds (HOLODEC)] on board the High-Performance Instrumented Airborne Platform for Environmental Research Gulfstream-V (HIAPER GV) aircraft from marine stratocumulus clouds during the Cloud System Evolution in the Trades (CSET) field project are examined for spatial uniformity. During one flight leg at 1190 m altitude, 1816 consecutive holograms were taken, which were approximately 40 m apart with individual hologram dimensions of 1.16 cm × 0.68 cm × 12.0 cm and with droplet concentrations of up to 500 cm−3. Unlike earlier studies, minimally intrusive data processing (e.g., bypassing calculation of number concen…

Atmospheric ScienceCloud microphysics010504 meteorology & atmospheric sciencesScale (ratio)DetectorHolographyEnvironmental research01 natural sciencesMarine stratocumuluslaw.inventionOn boardlaw0103 physical sciencesCloud dropletEnvironmental science010306 general physics0105 earth and related environmental sciencesRemote sensingJournal of the Atmospheric Sciences
researchProduct