0000000000217035

AUTHOR

José Julián Toledo Melero

showing 1 related works from this author

Local and nonlocal weighted pLaplacian evolution equations with Neumann boundary conditions

2011

In this paper we study existence and uniqueness of solutions to the local diffusion equation with Neumann boundary conditions and a bounded nonhomogeneous diffusion coefficient g ≥ 0, {ut = div (g|∇u|p-2∇u) in ]0; T[×Ωg|∇u|p-2u·n = 0 on ]0; T[×∂Ω; for 1 ≤ p < ∞. We show that a nonlocal counterpart of this diffusion problem is ut(t; x)= ∫ω J(x-y)g(x+y/2)|u(t; y)-u(t; x)| p-2 (u(t; y)-u(t; x)) dy in ]0; T[× Ω,where the diffusion coefficient has been reinterpreted by means of the values of g at the point x+y/2 in the integral operator. The fact that g ≥ 0 is allowed to vanish in a set of positive measure involves subtle difficulties, specially in the case p = 1.

Neumann boundary conditionsDiffusion equationGeneral MathematicsOperator (physics)Nonlocal diffusionMathematical analysisMeasure (mathematics)P-laplacianBounded functionNeumann boundary conditionp-LaplacianUniquenessDiffusion (business)Total variation flowMathematicsMathematical physics
researchProduct