Chapter 16 - Carbon Nanotubes: Synthesis, Characterization, and Applications in Drug-Delivery Systems
International audience; Nanoparticles are increasingly being considered in the medical field as an effective means to deliver drugs of interest or as diagnostic biosensors. Carbon nanotubes (CNTs) are an allotropic form of carbon related to the fullerene family. Their exceptional thermal, mechanical, and electronical properties together with their tubular shape, offering a high surface area and enabling adsorption or conjugation of a wide variety of therapeutic drugs or diagnostic agents, make CNTs attractive platforms for the treatment of various diseases. This chapter reviews the emerging synthesis, characterization, and and discusses the perspectives and obstacles of these promising nano…
From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. …
Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing
International audience; Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily. This type II transmembrane protein is able to bound specifically to cancer cell receptors (i.e., TRAIL-R1 (or DR4) and TRAIL-R2 (or DR5)) and to induce apoptosis without being toxic for healthy cells. Because membrane-bound TRAIL induces stronger receptor aggregation and apoptosis than soluble TRAIL, we proposed here to vectorize TRAIL using single-walled carbon nanotubes (SWCNTs) to mimic membrane TRAIL. Owing to their exceptional and revolutional properties, carbon nanotubes, especially SWCNTs, are used in a wide range of physical or,…
Electrosynthesis of Poly(alanine)-Like Peptides in Concentrated Alanine Based Electrolytes, Characterization Coupled to DFT Study and Application to pH Proton Receptor
The anodic oxidation of concentrated l-alanine on smooth electrodes such as platinum and glassy carbon electrodes was studied. Contrary to the previous studies performed up to now with diluted l-alanine, the electrochemical process generated here results in a completely different situation. The oxidation on smooth platinum was carried out by electrochemical quartz crystal microbalance (EQCM) coupled to cyclic voltammetry technique. The effects of concentration, scan rate, and pH (zwitterion at pH = 6 and alkaline media at pH = 13) on potential values were examined. Glassy carbon and smooth gold electrodes showed the same behavior as on smooth platinum electrode. Spectroscopic analysis such …
Direct Writing on Copper Ion Doped Silica Films by Electrogeneration of Metallic Microstructures
International audience; A facile and rapid localized electrochemical reduction of colloid copper particles is proposed using the scanning electrochemical,microscope (SECM), technique. In this purpose, thin films of composite silica :glass containing copper salts were prepared by the sol-gel method via the dip coating technique. Acid-catalyzed tetraethylorthosilane (TEOS) solutions charged with copper nitrate were used as precursors. This one-pot experiment can be performed in mild conditions. The localized generation of copper metallic nanostructures on silica film has been performed by electroreduction of methyl viologen on an ultramicroelectrode (UME). The UME generates reducing species, …
Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode
International audience; The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoel…
Carbon Nanotubes
Abstract Nanoparticles are increasingly being considered in the medical field as an effective means to deliver drugs of interest or as diagnostic biosensors. Carbon nanotubes (CNTs) are an allotropic form of carbon related to the fullerene family. Their exceptional thermal, mechanical, and electronical properties together with their tubular shape, offering a high surface area and enabling adsorption or conjugation of a wide variety of therapeutic drugs or diagnostic agents, make CNTs attractive platforms for the treatment of various diseases. This chapter reviews the emerging synthesis, characterization, and medical applications of CNTs and discusses the perspectives and obstacles of these …
Electrochemical deposition of a luminescent alkoxysilyl-based fluorenone film exhibiting halide sensitivity
International audience
Electrogeneration of Diiodoaurate in Dimethylsulfoxide on Gold Substrate and Localized Patterning
International audience; A localized etching of gold surface by scanning electrochemical microscope technique is presented where a dimethylsulfoxide-based electrolyte charged with iodine is used. The electrogenerated triiodide ion at the platinum ultramicroelectrode tip (feedback mode) acts as an oxidant for gold surface. The effects of electrode diameter and the bias time have been investigated. The approach curve method was used to hold the electrode tip close to the gold surface. A scanning electron microscope is used to observe the etched gold surfaces where disk-shaped dots are generated. The diameter of these holes depends directly on the Pt electrode diameter and the bias time.
Synthesis of polymer materials for use as cell culture substrates
International audience; Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Thus, poly-L-lysine, fibronectin or laminin are the most commonly used substrates. In this study, electrosynthesized biocompatible polymer films are proposed as an alternative to these standard substrates. The electrosynthesized polymers tested were polyethylenimine, polypropylenimme and polypyrrole. Then, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on these polymer substrates in an attempt to develop ne…
ePTFE ‐based biomedical devices: An overview of surgical efficiency
International audience; Polytetrafluoroethylene (PTFE) is a ubiquitous material used for implants and medical devices in general because of its high biocompatibility and inertness: blood vessel, heart, table jawbone, nose, eyes, or abdominal wall can benefit from its properties in case of disease or injury. Its expanded version, ePTFE is an improved version of PTFE with better mechanical properties, which extends its medical applications. A material as frequently used as ePTFE with these exceptional properties deserves a review of its main uses, developments, and possibility of improvements. In this systematic review, we examined clinical trials related to ePTFE-based medical devices from t…
TRAIL–NP hybrids for cancer therapy: a review
IF 7.367; International audience; Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials u…
A potential solution to avoid overdose of mixed drugs in the event of Covid-19: Nanomedicine at the heart of the Covid-19 pandemic.
Since 2020, the world is facing the first global pandemic of 21st century. Among all the solutions proposed to treat this new strain of coronavirus, named SARS-CoV-2, the vaccine seems a promising way but the delays are too long to be implemented quickly. In the emergency, a dual therapy has shown its effectiveness but has also provoked a set of debates around the dangerousness of a particular molecule, hydroxychloroquine. In particular, the doses to be delivered, according to the studies, were well beyond the acceptable doses to support the treatment without side effects. We propose here to use all the advantages of nanovectorization to address this question of concentration. Using quantum…
ePTFE functionalization for medical applications
Abstract Polytetrafluoroethylene (PTFE) is a ubiquitous material used in implants and medical devices in general due to its high biocompatibility and inertness; blood vessels, heart, jawbone, nose, eyes, or abdominal wall can benefit from its properties in the case of disease or injury. Its expanded version, ePTFE, is an improved version of PTFE with better mechanical properties, which extend its medical applications. However, ePTFE implants often lack improvement in properties such as antibacterial, antistenosis, or tissue integration properties. Improvements in these properties by several strategies of functionalization for medical purposes are discussed in this review. Covalent and non-c…
Nanovector formation by functionalization of TRAIL ligand on single-walled carbon nanotube: Experimental and theoretical evidences
Équipe 104 : Nanomatériaux; International audience; The synthesis and the characterization of a novel nanovector based on oxidized single-walled carbon nanotubes (SWCNT) functionalized with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via noncovalent 1-pyrenebutanoic acid N-hydrosuccinimid ester (PSE) is described. Experimental noncovalent functionalized SWCNT by PSE are compared to full DFT theoretical predictions. For this, several experimental techniques are gathered to prove the well functionalization of oxidized SWCNT by pi-pi stacking such as micro Raman and XPS spectroscopy analysis coupled to full-DFT calculations. Scanning transmission electron microscopy (STEM) …