0000000000217498
AUTHOR
F. Markert
AC-Stark shift and photoionization of Rydberg atoms in an optical dipole trap
We have measured the AC-Stark shift of the $14D_{5/2}$ Rydberg state of rubidium 87 in an optical dipole trap formed by a focussed CO$_2$-laser. We find good quantitative agreement with the model of a free electron experiencing a ponderomotive potential in the light field. In order to reproduce the observed spectra we take into account the broadening of the Rydberg state due to photoionization. The extracted cross-section is compatible with previous measurements on neighboring Rydberg states.
Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter
ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e+) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e−) that are used to cool Pbars and e+, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise f…