0000000000217579

AUTHOR

Päivi Mäki-arvela

Isomerization of α-pinene oxide over ZSM-5 based micro-mesoporous materials

Abstract Few types of ZSM-5 based micro-mesoporous materials obtained via a dual template method, steam-assisted conversion and dual-functional templating were evaluated in α-pinene oxide isomerization. Complete conversion and the highest selectivity towards trans-carveol (ca. 40–43%) were achieved over X-ray amorphous micro-mesoporous aluminosilicates as well as mesoporous molecular sieves AlSi-SBA-15. In addition, X-ray amorphous samples containing the secondary building units of ZSM-5 zeolite demonstrated the highest rate of α-pinene oxide isomerization. The yield of the most desired product trans-carveol to a large extent depends on the accessibility of acid sites to the reagents molecu…

research product

Kinetic Modeling of Ethyl Benzoylformate Enantioselective Hydrogenation over Pt/Al2O3

A kinetic model was developed for the enantioselective hydrogenation of ethyl benzoylformate (EBF) on a modified Pt/Al2O3 catalyst. This model was based on the assumption of different numbers of si...

research product

The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide

Different synthesis methods such as homogeneous precipitation at room temperature and supercritical water (T > 647 K and P > 22.1 MPa) were employed for cerium oxide preparation. Additionally, deposition of ceria on silica mesoporous material, SBA-15, was carried out. The obtained materials were characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen physisorption, X-ray photoelectron spectroscopy and CO2 temperature programmed desorption. Considerable variations in physico-chemical properties of the resulting materials were observed. The catalytic activities of pristine cerium oxide and ceria loaded on SBA-15 support were…

research product

CO2 capture from biogas: Absorbent selection

The development of proper biogas upgrading technology offers a viable means to utilize biogas in conventional power systems. In this paper, various molecular and ionic solvent systems were evaluated for CO2 removal from biogas in a loop reactor system. The performance of amine solutions, ionic liquids and their mixtures, amino acid salts and solutions blended with piperazine was compared in terms of their CO2 loading capacity. The experimental results revealed that addition of small amounts of piperazine can increase on average by 30 vol% the efficiency of above-mentioned solutions. The CO2 capturing capacity achieved for the most promising solvents was in the range of 50–60 L CO2/L absorbe…

research product