0000000000217584

AUTHOR

Sergio Rica

showing 12 related works from this author

Condensation of classical nonlinear waves

2005

We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schr\"odinger equation as a representative model. We formulate a thermodynamic description of the condensation process by using a wave turbulence theory with ultraviolet cut-off. In 3 dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in 2 dimensions, in analogy with standard Bose-Einstein condensation in quantum systems. Numerical simulations show that the thermodynamic limit is reached for systems with $16^3$ computational modes and greater. On the basis of a modified wave tu…

PhysicsCondensed Matter::Quantum GasesPhase transitionStatistical Mechanics (cond-mat.stat-mech)Thermodynamic equilibriumWave turbulenceCondensationGeneral Physics and AstronomyFOS: Physical sciencesWave equationSchrödinger equationNonlinear systemsymbols.namesakeClassical mechanicssymbolsNonlinear Schrödinger equationCondensed Matter - Statistical Mechanics
researchProduct

Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves

2016

We provide an introduction to different wave turbulence formalisms describing the propagation of partially incoherent optical waves in nonlinear media. We consider the nonlinear Schrodinger equation as a representative model accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. We discuss the wave turbulence kinetic equation describing, e.g., wave condensation or wave thermalization through supercontinuum generation; the Vlasov formalism describing incoherent modulational instabilities and the formation of large scale incoherent localized structures in analogy with long-range gravitational systems; and the weak Langmuir turbulence formalis…

PhysicsTurbulenceLangmuir TurbulenceWave turbulenceVlasov equationIncoherent scatter01 natural sciencesSupercontinuum010309 opticssymbols.namesakeNonlinear systemQuantum electrodynamics0103 physical sciencessymbols010306 general physicsNonlinear Schrödinger equation
researchProduct

Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields

2008

We show that a conservative system of incoherent nonlinear waves exhibits, as a rule, an irreversible process of coherence transfer, in which the incoherence of the system is absorbed by the small-amplitude field, thus allowing the high-amplitude field to evolve towards a highly condensed coherent state. This process of coherence absorption results from the natural thermalization of the fields to a thermodynamic equilibrium state. The theory reveals that, contrary to a classical gas system, a wave system does not satisfy an equipartition of energy among the particles. Such a distinctive feature is the key property underlying the existence of the coherence absorption process. The coherence a…

Irreversible processPhysicsThermalisationThermodynamic equilibriumQuantum mechanicsGeneral Physics and AstronomyCoherent statesDegree of coherenceQuantumEquipartition theoremCoherence (physics)EPL (Europhysics Letters)
researchProduct

Roadmap on optical rogue waves and extreme events

2016

Nail Akhmediev et al. ; 38 págs.; 28 figs.

:Ciències de la visió::Òptica física [Àrees temàtiques de la UPC]extreme eventsNonlinear opticsFreak-wavesProcess (engineering)Subject (philosophy)Supercontinuum generationPeregrine soliton01 natural sciences010309 opticsOptics0103 physical sciencesZero-dispersion wavelength[NLIN]Nonlinear Sciences [physics]Rogue wave010306 general physicsModulation instabilityComputingMilieux_MISCELLANEOUSPhysicsÒptica no lineal:Física [Àrees temàtiques de la UPC]Nonlinear schrodinger-equationbusiness.industryGinzburg-Landau equationnonlinear opticsRogue wavesOptical rogue wavesrogue wavesextreme events; nonlinear optics; rogue wavesExtreme eventsValue statisticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Photonic crystal fibersWork (electrical)Noise-like pulsesPeregrine solitonbusinessScientific terminology
researchProduct

Observation of the kinetic condensation of classical waves

2012

International audience; The observation of Bose-Einstein condensation, in which particle interactions lead to a thermodynamic transition into a single, macroscopically populated coherent state, is a triumph of modern physics(1-5). It is commonly assumed that this transition is a quantum process, relying on quantum statistics, but recent studies in wave turbulence theory have suggested that classical waves with random phases can condense in a formally identical manner(6-9). In complete analogy with gas kinetics, particle velocities map to wavepacket k-vectors, collisions are mimicked by four-wave mixing, and entropy principles drive the system towards an equipartition of energy. Here, we use…

PhysicsCondensed Matter::Quantum GasesSPECTRUMDIGITAL HOLOGRAPHYCondensed Matter::OtherCondensationGeneral Physics and AstronomyWEAK-TURBULENCEKinetic energyPHOTONS01 natural sciencesTHERMALIZATION010305 fluids & plasmasCrystalNonlinear systemClassical mechanicsLIGHTGASQuantum mechanics0103 physical sciencesBOSE-EINSTEIN CONDENSATIONBose–Einstein condensationFIELD010306 general physicsQuantum
researchProduct

Observation of classical optical wave condensation

2010

We demonstrate the nonlinear condensation of classical optical waves. The condensation is observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherPhysics::OpticsNonlinear opticsKinetic energyPhysical opticsMolecular physicsCoherence lengthFour-wave mixingCross-polarized wave generationQuantum mechanicsNonlinear Sciences::Pattern Formation and SolitonsRefractive indexCoherence (physics)Frontiers in Optics 2010/Laser Science XXVI
researchProduct

Observation of the condensation of classical waves

2010

We report a theoretical, numerical and experimental study of condensation of classical optical waves. The condensation of observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysics[PHYS]Physics [physics]Computer simulationCondensed Matter::OtherWave propagationPhysics::OpticsNonlinear opticsKinetic energy01 natural scienceslaw.invention[PHYS] Physics [physics]010309 opticsNonlinear systemsymbols.namesakeFourier transformlawQuantum electrodynamicsQuantum mechanics0103 physical sciencessymbols010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsBose–Einstein condensateCoherence (physics)
researchProduct

Condensation of classical optical waves beyond the cubic nonlinear Schrodinger equation

2012

International audience; A completely classical nonlinear wave is known to exhibit a process of condensation whose thermodynamic properties are analogous to those of the genuine Bose-Einstein condensation. So far this phenomenon of wave condensation has been studied essentially in the framework of the nonlinear Schrodinger (NLS) equation with a pure cubic Kerr nonlinearity. We study wave condensation by considering two representative generalizations of the NLS equation that are relevant to the context of nonlinear optics, the nonlocal nonlinearity and the saturable nonlinearity. For both cases we derive analytical expressions of the condensate fraction in the weakly and the strongly nonlinea…

POLARIZATIONPROPAGATION01 natural sciences010305 fluids & plasmaslaw.inventionsymbols.namesakeLINEAR ENERGY TRANSFERlawQuantum mechanics0103 physical sciencesBOSE-EINSTEIN CONDENSATIONElectrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysicsCondensed Matter::Quantum GasesINCOHERENT-LIGHTSPECTRUMAnalytical expressionsTurbulenceNonlinear opticsPolarization (waves)THERMALIZATIONAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsRAMAN FIBER LASERMODELNonlinear systemClassical mechanicsThermalisationsymbolsTURBULENCEBose–Einstein condensate
researchProduct

Condensation of classical optical waves

2010

We demonstrate the nonlinear condensation of classical optical waves. The condensation is observed directly, as a function of nonlinearity and wave kinetic energy, in a self-defocusing photorefractive crystal.

Condensed Matter::Quantum GasesPhysics[PHYS]Physics [physics]Condensed Matter::OtherWave propagationCondensationPhysics::OpticsPhysical opticsKinetic energy01 natural sciencesMolecular physics010305 fluids & plasmaslaw.invention[PHYS] Physics [physics]Nonlinear systemCoherence theorylawQuantum mechanics0103 physical sciences010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsRefractive indexBose–Einstein condensate
researchProduct

Breakdown of weak-turbulence and nonlinear wave condensation

2009

Abstract The formation of a large-scale coherent structure (a condensate) as a result of the long time evolution of the initial value problem of a classical partial differential nonlinear wave equation is considered. We consider the nonintegrable and unforced defocusing NonLinear Schrodinger (NLS) equation as a representative model. In spite of the formal reversibility of the NLS equation, the nonlinear wave exhibits an irreversible evolution towards a thermodynamic equilibrium state. The equilibrium state is characterized by a homogeneous solution (condensate), with small-scale fluctuations superposed (uncondensed particles), which store the information necessary for “time reversal”. We an…

Free particleThermodynamic equilibriumNon-equilibrium thermodynamicsStatistical and Nonlinear PhysicsCondensed Matter PhysicsSchrödinger equationNonlinear systemsymbols.namesakeThermodynamic limitsymbolsInitial value problemNonlinear Schrödinger equationMathematical physicsMathematicsPhysica D: Nonlinear Phenomena
researchProduct

Wave turbulence and thermalization of random nonlinear waves

2009

International audience

[PHYS]Physics [physics]ComputingMilieux_MISCELLANEOUS[PHYS] Physics [physics]
researchProduct

Thermalization of random nonlinear waves: Application to optical waves

2009

International audience

[PHYS]Physics [physics]ComputingMilieux_MISCELLANEOUS[PHYS] Physics [physics]
researchProduct