0000000000217807
AUTHOR
M. Reichert
The novel HALO mini-DOAS instrument: inferring trace gas concentrations from airborne UV/visible limb spectroscopy under all skies using the scaling method
Abstract. We report on a novel six-channel optical spectrometer (further on called mini-DOAS instrument) for airborne nadir and limb measurements of atmospheric trace gases, liquid and solid water, and spectral radiances in the UV/vis and NIR spectral ranges. The spectrometer was developed for measurements from aboard the German High-Altitude and Long-Range (HALO) research aircraft during dedicated research missions. Here we report on the relevant instrumental details and the novel scaling method used to infer the mixing ratios of UV/vis absorbing trace gases from their absorption measured in limb geometry. The uncertainties of the scaling method are assessed in more detail than before for …
SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
Abstract Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in su…
Nucleosynthesis in jet-driven and jet-associated supernovae
In contrast to regular core-collapse supernovae, explosions of rapidly rotating massive stars can develop jets, fast collimated outflows directed along the rotational axis. Depending on the rate of rotation and the magnetic field strength before collapse as well as on possible mechanisms amplifying the magnetic field, such a core can explode magnetorotationally rather than via the standard supernova mechanism based on neutrino heating. This scenario can explain the highest kinetic energies observed in the class of hypernovae. On longer time scales, rotation and magnetic fields can play an important role in the engine of long gamma-ray burst powered by proto-magnetars or hyperaccreting black…