Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels.
Triple-negative breast cancer (TNBC) is a form of BC characterized by high aggressiveness and therapy resistance probably determined by cancer stem cells. MCL1 is an antiapoptotic Bcl-2 family member that could limit the efficacy of anticancer agents as recombinant human tumor necrosis factor related apoptosis-inducing ligand (rh-TRAIL). Here, we investigated MCL1 expression in TNBC tissues and cells. We found MCL1 differentially expressed (upregulated or downregulated) in TNBC tissues. Furthermore, in comparison to the human mammary epithelial cells, we found that MDA-MB-231 cells show similar messenger RNA levels but higher MCL1 protein levels, whereas it resulted downregulated in MDA-MB-…
Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation
MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR- 29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b…
A loop involving NRF2, miR‐29b‐1‐5p and AKT, regulates cell fate of MDA‐MB‐231 triple‐negative breast cancer cells
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and …