0000000000222129

AUTHOR

Ligang Wu

Filtering with dissipativity for T-S fuzzy systems with time-varying delay: Reciprocally convex approach

This paper is focused on the problem of reliable filter design with strictly dissipativity for a class of discrete-time T-S fuzzy time-delay systems. Our attention is paid on the design of reliable filter to ensure a strictly dissipative performance for the filtering error system. By employing the reciprocally convex approach, a sufficient condition of dissipativity analysis is obtained for T-S fuzzy delayed systems with sensor failures. A desired reliable filter is designed by solving a convex optimization problem.

research product

Design on fuzzy control for a class of stochastic nonlinear systems

The problem of Hankel-norm output feedback control is solved for a class of T-S fuzzy stochastic systems. The dynamic output feedback controller design technique is proposed by employing fuzzy-basis-dependent Lyapunov function approach and the conversion on the Hankel-norm controller parameters. Sufficient conditions are established to design the controllers such that the resulting closed-loop system is stochastically stable and satisfies a prescribed performance. The desired output feedback controller can be obtained by solving a convex optimization problem, which can be efficiently solved by standard numerical algorithms Refereed/Peer-reviewed

research product

Induced ℓ<inf>2</inf> control of discrete-time Takagi-Sugeno fuzzy systems with time-varying delays via dynamic output feedback

This paper is concerned with analyzing a novel model transformation of discrete-time Takagi-Sugeno (T-S) fuzzy systems with time-varying delays and applying it to dynamic output feedback (DOF) controller design. A new auxiliary model is proposed by employing a new approximation for time-varying delay state, and then delay partitioning method is used to analyze the scaled small gain of this auxiliary model. A sufficient condition on discrete-time T-S fuzzy systems with time-varying delays, which guarantees the corresponding closed-loop system to be asymptotically stable and has an induced l 2 disturbance attenuation performance, is derived by employing the scaled small gain theorem. Then the…

research product

Fuzzy filter design for discrete-time delayed systems with distributed probabilistic sensor faults

In this paper, the problem of distributed fuzzy filter design has been solved for T-S fuzzy systems with time-varying delays and multiple probabilistic packet losses. Our attention is paid to designing the distributed fuzzy filters to guarantee the filtering error dynamic system to be mean-square asymptotically stable with an average ℋ∞ performance. Sufficient conditions for the obtained filtering error dynamic system are proposed by applying a comparison model and the scaled small gain theorem. Based on the measurements and estimates of the system states for each sensor and its neighbors, the solution of the parameters of the distributed fuzzy filters is characterized in terms of the feasi…

research product

Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation

This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…

research product

Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles

Published version of an article in the journal: International Journal of Fuzzy Systems. Also available from the publisher: http://www.ijfs.org.tw/ In this paper, we present a fuzzy reliable tracking control design method for flexible air-breathing hypersonic vehicles (FAHVs) subject to disturbances and possible sensor/actuator failures. This problem is challenging due to the strong coupling effects, variable operating conditions and possible failures in FAHVs. First, Takagi-Sugeno (T-S) fuzzy model isused to represent the longitudinal dynamics model of FAHVs. Then, by considering the disturbances and the faults, the fuzzy reliable tracking problem is proposed, and the tracking control probl…

research product

D-stability for discrete-time t-s fuzzy descriptor systems with multiple delays

In this work, the D-stability problem is considered for a class of discrete-time Takagi-Sugeno (T-S) fuzzy descriptor systems with multiple state delays. In terms of linear matrix inequality, sufficient conditions are proposed to ensure that all poles of the descriptor T-S fuzzy system are located within a disk contained in the unit circle. Moreover, a sufficient condition is presented such that the singular system is regular, causal and D-stable in spite of multiple state delays. Finally, an example is given to show the effectiveness and advantages of the proposed techniques Refereed/Peer-reviewed

research product

Full- and reduced-order filter design for discrete-time T-S fuzzy systems with time-varying delay

This paper is focused on the problem of ℋ ∞ filtering for a class of discrete-time T-S fuzzy time-varying delay systems. Our interest is how to design full- and reduced-order filters that guarantee the filtering error system to be asymptotically stable with a prescribed ℋ ∞ performance. Sufficient conditions for the obtained filtering error system are proposed by applying an input-output approach and a two-term approximation method, which is employed to approximate the time-varying delay. The corresponding full and reduced-order filter design is cast into a convex optimization problem, which can be efficiently solved by standard numerical algorithms.

research product