0000000000223211

AUTHOR

Hershal Pandya

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

research product

Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…

research product

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103

research product

IceCube-Gen2: The Window to the Extreme Universe

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

research product

EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801

research product

Astrophysical neutrinos and cosmic rays observed by IceCube

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

research product

Neutrino oscillation studies with IceCube-DeepCore

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

research product

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

research product

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.

research product

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

research product

Search for sterile neutrino mixing using three years of IceCube DeepCore data

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

research product

Characterization of the atmospheric muon flux in IceCube

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

research product

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

research product

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

research product

Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atm…

research product

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

research product