0000000000224033
AUTHOR
Hans Zinnecker
The Origin of T Tauri X-ray Emission: New Insights from the Chandra Orion Ultradeep Project
We use the data of the Chandra Orion Ultradeep Project (COUP) to study the nearly 600 X-ray sources that can be reliably identified with optically well characterized T Tauri stars (TTS) in the Orion Nebula Cluster. We detect X-ray emission from more than 97% of the optically visible late-type (spectral types F to M) cluster stars. This proofs that there is no ``X-ray quiet'' population of late-type stars with suppressed magnetic activity. All TTS with known rotation periods lie in the saturated or super-saturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTS show a much larger scatter in X-ray activity than seen for the MS stars. S…
Proper motions of embedded protostellar jets in Serpens
Context. To investigate the dynamical properties of protostellar jets. Aims. Determine the proper motion of protostellar jets around Class 0 and Class I sources in an active star forming region in Serpens. Methods. Multi-epoch deep images in the 2.122 $\mu$m line of molecular hydrogen, v=1-0 S(1), obtained with the near-infrared instrument NOTCam over a time-scale of 10 years, are used to determine proper motion of knots and jets. K-band spectroscopy of the brighter knots is used to supply radial velocities, estimate extinction, excitation temperature, and H$_2$ column densities towards these knots. Results. We measure the proper motion of 31 knots over different time scales (2, 4, 6, and 1…