0000000000225086
AUTHOR
Athanasia D. Skentou
Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks
The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-contact sliding tests under non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related information, since they easily permitted the determination of areas under steady-state wear that were appropriate for use…
Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, …
Novel fuzzy-based optimization approaches for the prediction of ultimate axial load of circular concrete-filled steel tubes
An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework for estimating the axial compression capacity of circular CCFST columns. In the hybrid models, differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain the optimal membership functions of the base FS model. To train the models with the new hybrid techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled from openly availa…
Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects
A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of their response to seismic stresses are exceedingly difficult because of the complexity of the structural system and the anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the parameters involved in the problem such as the masonry material mechanical characteristics and earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a detailed analytical methodological approac…
A novel heuristic algorithm for the modeling and risk assessment of the COVID-19 pandemic phenomenon
This article belongs to the special issue: Soft computing techniques in materials science and engineering Summarization: The modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of dai…
A Novel Heuristic Global Algorithm to Predict the COVID-19 Pandemic Trend
SummaryMathematical models are useful tools to predict the course of an epidemic. A heuristic global Gaussian-function-based algorithm for predicting the COVID-19 pandemic trend is proposed for estimating how the temporal evolution of the pandemic develops by predicting daily COVID-19 deaths, for up to 10 days, starting with the day the prediction is made. The validity of the proposed heuristic global algorithm was tested in the case of China (at different temporal stages of the pandemic). The algorithm was used to obtain predictions in six different locations: California, New York, Iran, Sweden, the United Kingdom, and the entire United States, and in all cases the prediction was confirmed…