0000000000225495

AUTHOR

David L Gibbs

showing 1 related works from this author

A Pan-Cancer Approach to Predict Responsiveness to Immune Checkpoint Inhibitors by Machine Learning

2019

Immunotherapy by using immune checkpoint inhibitors (ICI) has dramatically improved the treatment options in various cancers, increasing survival rates for treated patients. Nevertheless, there are heterogeneous response rates to ICI among different cancer types, and even in the context of patients affected by a specific cancer. Thus, it becomes crucial to identify factors that predict the response to immunotherapeutic approaches. A comprehensive investigation of the mutational and immunological aspects of the tumor can be useful to obtain a robust prediction. By performing a pan-cancer analysis on gene expression data from the Cancer Genome Atlas (TCGA, 8055 cases and 29 cancer types), we …

0301 basic medicineCancer ResearchImmune checkpoint inhibitorsmedicine.medical_treatmentimmunology-pancancerimmune checkpoint inhibitorContext (language use)Machine learningcomputer.software_genrelcsh:RC254-282Article03 medical and health sciences0302 clinical medicinemedicineExtreme gradient boostingPan cancerbusiness.industryCancerImmunotherapylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensMatthews correlation coefficientmedicine.diseaseSupport vector machine030104 developmental biologymachine learningOncology030220 oncology & carcinogenesisArtificial intelligencebusinesscomputerCancers
researchProduct