0000000000225719

AUTHOR

Marco Foiani

0000-0003-4795-834x

Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer.

Abstract In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments. Integrated transcriptomic and deep-phenotyping analyses revealed that FMD profoundly reshapes antican…

research product

Abstract CT261: METAMECH -A Master Observational Trial empowering mechanobiology translational research and mechanobased proof of concept trials in breast cancer

Abstract Background: Breast cancer (BC) is the most frequent tumor in women worldwide. BC lethality is caused by aggressive, therapy-resistant metastases (mBC). Preliminary data have shown that mBC lesions are invariably embedded into a densely packed network of fibrous extracellular matrix, making the metastatic microenvironment a potent inducer of mechanical inputs, ultimately leading to the activation of the transcription factors YAP/TAZ. Aberrant mechano-signaling could thus represent a vulnerability of metastasis, which can be exploited to develop new therapeutic strategies. To investigate how metastatic outgrowth is regulated by the physical properties of the microenvironment, and how…

research product

Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer.

: The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rin…

research product

YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING

Ageing is intimately connected to the induction of cell senescence(1,2), but why this is so remains poorly understood. A key challenge isthe identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing(3). Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the e…

research product