0000000000226207

AUTHOR

Francesco Prudenzano

showing 7 related works from this author

Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers

2010

International audience; A theoretical investigation of an innovative cascade laser source is performed. The main goal of the work is the design of a continuous-wave (CW) photonic crystal fiber (PCF) laser, based on an erbium-doped chalcogenide glass. Due to the comparable lifetimes of the 4I13/2, 4I11/2 and 4I9/2 erbium energy levels, the simultaneous emissions at the wavelengths close to 2.7 μm and 4.5 μm are obtained with a pump wavelength close to 806 nm (direct pumping into the level 4I9/2). This scheme could be useful to develop high efficiency, high beam-quality and compact Near-IR and Mid-IR oscillators with single-mode output for applications not only in surgery but also in spectros…

Materials scienceOptical fiberOptical fiberGlass fiberInfrared fiberschemistry.chemical_elementChalcogenide glassPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsInorganic ChemistryErbiumOpticslaw0103 physical sciencesCascade lasersElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopybusiness.industryOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryRate equation021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInfrared fibers; Optical fiber; Chalcogenides; Cascade laserschemistryCascade[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologybusinessPhotonic-crystal fiberChalcogenides
researchProduct

Coupled experiment/simulation approach for the design of radiation-hardened rare-earth doped optical fibers and amplifiers

2011

We developed an approach to design radiation-hardened rare earth -doped fibers and amplifiers. This methodology combines testing experiments on these devices with particle swarm optimization (PSO) calculations. The composition of Er/Yb-doped phosphosilicate fibers was improved by introducing Cerium inside their cores. Such composition strongly reduces the amplifier radiation sensitivity, limiting its degradation: we observed a gain decreasing from 19 dB to 18 dB after 50 krad whereas previous studies reported higher degradations up to 0°dB at such doses. PSO calculations, taking only into account the radiation effects on the absorption efficiency around the pump and emission wavelengths, co…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]YtterbiumOptical fiberMaterials scienceAstrophysics::High Energy Astrophysical PhenomenaRadiation effectschemistry.chemical_elementradiation effects optical fibers rare-earth ions amplifiers particle swarm optimization erbium ytterbiumRadiation7. Clean energy01 natural scienceslaw.invention010309 opticsErbiumOpticslaw0103 physical sciencesOptical fibersFiberIrradiationYtterbiumrare-earth ions[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]particle swarm optimization010308 nuclear & particles physicsbusiness.industryAmplifierAttenuationOptique / photoniquePhysics::Classical PhysicschemistryamplifiersbusinessErbium2011 12th European Conference on Radiation and Its Effects on Components and Systems
researchProduct

Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber

2009

International audience; This paper deals with the design of an erbium doped microstructured optical fiber (MOF) amplifier operating in the mid-infrared (mid-IR) wavelength range, more precisely around 4.5 µm wavelength. A homemade numerical code which solves the rate equations and the power propagation equations has been ad hoc developed to theoretically investigate the feasibility of mid-IR MOF amplifier. On the basis of the measured energy level transition parameters of a Er3+-doped Ga5Ge20Sb10S65 chalcogenide glass, the amplifier feasibility is demonstrated exhibiting high gain and low noise figure.

Finite element methodMaterials scienceOptical fiberChalcogenidePACS: 42.55.W 42.81.Q 42.60.D 02.70.Dchemistry.chemical_elementChalcogenide glassPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsInorganic ChemistryErbiumchemistry.chemical_compoundOpticslaw0103 physical sciencesElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFinite element method; Photonic crystal fiber amplifiers; Rate equationsSpectroscopyAstrophysics::Galaxy Astrophysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAmplifierOrganic ChemistryRate equationMicrostructured optical fiber021001 nanoscience & nanotechnologyPhotonic crystal fiber amplifiersAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthRate equationschemistry0210 nano-technologybusiness
researchProduct

Radiation hardening techniques for rare-earth-based optical fibers and amplifiers

2012

Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern …

Optical amplifierOptical fiberMaterials scienceoptical fibersbusiness.industryAmplifierRadiation effects; optical fibers; erbium; ytterbium; amplifierschemistry.chemical_elementRadiation effectsytterbiumRadiationlaw.inventionErbiumerbiumRadiation sensitivitychemistrylawradiation effects optical fibers erbium ytterbium amplifiersOptoelectronicsamplifiersbusinessRadiation hardeningRadiation resistance
researchProduct

Design of Er3+-doped chalcogenide glass laser for MID-IR application

2009

Abstract The feasibility of a photonic crystal fiber laser (PCF laser), made of a novel Er 3+ -doped chalcogenide glass and operating at the wavelength λ s  = 4.5 μm is investigated. The design is performed on the basis of spectroscopic and optical parameters measured on a fabricated Er 3+ -doped Ga 5 Ge 20 Sb 10 S 65 chalcogenide bulk sample. The simulations have been performed by employing a home made numerical code that solves the multilevel rate equations and the power propagation equations via a Runge-Kutta iterative method. The numerical results indicate that a laser exhibiting slope efficiency close to the maximum theoretical one and a wide tunability in the wavelengths range where t…

Optical fiberMaterials scienceChalcogenideInfrared fibersPhysics::OpticsChalcogenide glass02 engineering and technology01 natural sciences7. Clean energylaw.invention010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesMaterials ChemistryOptical fibersChalcogenides; Infrared fibers; Lasers; Optical fibersbusiness.industryLasersSlope efficiencyDoping[CHIM.MATE]Chemical Sciences/Material chemistryRate equation021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserElectronic Optical and Magnetic Materialschemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryCeramics and Composites0210 nano-technologybusinessChalcogenidesPhotonic-crystal fiberJournal of Non-Crystalline Solids
researchProduct

Design of Radiation-Hardened Rare-Earth Doped Amplifiers through a Coupled Experiment/Simulation Approach

2013

International audience; We present an approach coupling a limited experimental number of tests with numerical simulations regarding the design of radiation-hardened (RH) rare earth (RE)-doped fiber amplifiers. Radiation tests are done on RE-doped fiber samples in order to measure and assess the values of the principal input parameters requested by the simulation tool based on particle swarm optimization (PSO) approach. The proposed simulation procedure is validated by comparing the calculation results with the measured degradations of two amplifiers made with standard and RH RE-doped optical fibers, respectively. After validation, the numerical code is used to theoretically investigate the …

Rare-Earth ionsOptical fiberMaterials scienceoptical fiberschemistry.chemical_elementlaw.inventionErbiumlawElectronic engineeringSensitivity (control systems)FiberYtterbiumrare-earth ionsOptical FibersCouplingparticle swarm optimizationAmplifierOptique / photoniqueParticle swarm optimizationytterbiumAtomic and Molecular Physics and OpticsAmplifiers erbium optical fibers particle swarm optimization radiation effects rare-earth ions ytterbiumAmplifiersRadiation EffectserbiumchemistryParticle Swarm Optimizationoptical fiber Rare-earth ions optical amplifier radiation induced absortpion Particle swarm optimization[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonicradiation effectsErbiumSpace environment
researchProduct

Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers

2009

International audience; The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.

Optical fiberMaterials scienceOptical amplifiersChalcogenideChalcogenide glassRare-earth-doped materials02 engineering and technology01 natural sciences7. Clean energySignallaw.invention010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesElectrical and Electronic EngineeringOptical amplifierbusiness.industryAmplifierMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryFibers; Optical amplifiers; Rare-earth-doped materials021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFibersWavelengthchemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologybusiness
researchProduct