0000000000227838

AUTHOR

Jeremy Green

showing 24 related works from this author

Towards extracting the timelike pion form factor on CLS two-flavour ensembles

2017

35th International Symposium on Lattice Field Theory, Lattice 2017, Granada, Spain, 18 Jun 2017 - 24 Jun 2017; The European physical journal / Web of Conferences 175, 05027 (2018). doi:10.1051/epjconf/201817505027

PhysicsParticle physicsMuon010308 nuclear & particles physicsPhysicsQC1-999High Energy Physics::LatticeHadronHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesFermion01 natural sciences530Formalism (philosophy of mathematics)High Energy Physics - LatticeCLs upper limitsPion0103 physical sciencesddc:530High Energy Physics::ExperimentVacuum polarization010306 general physicsNuclear Experiment
researchProduct

Initial nucleon structure results with chiral quarks at the physical point

2014

We report initial nucleon structure results computed on lattices with 2+1 dynamical M\"obius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of $g_A$ and $_{u-d}$ to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode def…

PhysicsNuclear physicsPhysical pointHigh Energy Physics - LatticeHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesddc:530National laboratory
researchProduct

Nucleon form factors with light Wilson quarks

2014

Jeremy Green∗,a† Michael Engelhardt,b Stefan Krieg,cd Stefan Meinel,a John Negele,a Andrew Pochinskya and Sergey Syritsyne aCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA bDepartment of Physics, New Mexico State University, Las Cruces, New Mexico 88003, USA cBergische Universitat Wuppertal, D-42119 Wuppertal, Germany dIAS, Julich Supercomputing Centre, Forschungszentrum Julich, D-52425 Julich, Germany eLawrence Berkeley National Laboratory, Berkeley, California 94720, USA E-mail: green@kph.uni-mainz.de, engel@nmsu.edu, s.krieg@fz-juelich.de, smeinel@mit.edu, negele@mit.edu, avp@mit.edu,

Nuclear physicsPhysicsQuarkParticle physicsNucleonNational laboratoryProceedings of 31st International Symposium on Lattice Field Theory LATTICE 2013 — PoS(LATTICE 2013)
researchProduct

Hadronic light-by-light scattering contribution to the muon $g-2$ on the lattice

2018

International Workshop on “Flavour Changing and Conserving Processes, FCCP2017, Anacapri, Italy, 7 Sep 2017 - 9 Sep 2017; The European physical journal / Web of Conferences 179, 01017 (2018). doi:10.1051/epjconf/201817901017

Particle physicsPhotonQC1-999High Energy Physics::LatticeHadronFOS: Physical sciences01 natural sciences530Light scatteringPionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNuclear ExperimentPhysicsMuon010308 nuclear & particles physicsScatteringPhysicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentLepton
researchProduct

Position-space approach to hadronic light-by-light scattering in the muon $g-2$ on the lattice

2016

The anomalous magnetic moment of the muon currently exhibits a discrepancy of about three standard deviations between the experimental value and recent Standard Model predictions. The theoretical uncertainty is dominated by the hadronic vacuum polarization and the hadronic light-by-light (HLbL) scattering contributions, where the latter has so far only been fully evaluated using different models. To pave the way for a lattice calculation of HLbL, we present an expression for the HLbL contribution to $g-2$ that involves a multidimensional integral over a position-space QED kernel function in the continuum and a lattice QCD four-point correlator. We describe our semi-analytic calculation of t…

PhysicsParticle physicsMuonAnomalous magnetic dipole momentScatteringHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesPosition and momentum spaceLattice QCDLight scatteringHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)Vacuum polarization
researchProduct

Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs)

2016

An ongoing program of evaluating TMD observables within Lattice QCD is reviewed, summarizing recent progress with respect to several challenges faced by such calculations. These lattice calculations are based on a definition of TMDs through hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for a lattice calculation. Data on the naively T-odd Sivers and Boer-Mulders effects as well as the transversity TMD are presented.

QuarkPhysicsParticle physics010308 nuclear & particles physicsPhysicsQC1-999High Energy Physics::LatticeLorentz transformationHadronPartonObservableLattice QCD01 natural sciencesNuclear physicssymbols.namesakeAmplitudeLattice (order)0103 physical sciencessymbolsddc:530010306 general physics
researchProduct

Towards extracting the timelike pion form factor on CLS 2-flavour ensembles

2016

Results are presented from an ongoing study of the $\rho$ resonance. We use the distillation approach in order to create correlator matrices involving $\rho$ and $\pi\pi$ interpolators. The study is done in a centre-of-mass frame and several moving frames. We are able to extract energy levels by solving the GEVP of those correlator matrices. The initial exploratory study is being done on a CLS 2-flavour lattice with a pion mass of $451$ $\mathrm{MeV}$ using $\mathcal{O}(a)$ improved Wilson fermions. One aim of this work is to extract the timelike pion form factor after applying the L\"uscher formalism. We also plan to integrate this study with the existing Mainz programme for the calculatio…

PhysicsParticle physicsMuonHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFlavourFOS: Physical sciencesFermionHigh Energy Physics - LatticePionCLs upper limitsLattice (order)High Energy Physics::ExperimentVacuum polarizationNuclear ExperimentProceedings of 34th annual International Symposium on Lattice Field Theory — PoS(LATTICE2016)
researchProduct

Hadronic light-by-light contribution to $(g-2)_\mu$ from lattice QCD with SU(3) flavor symmetry

2020

We perform a lattice QCD calculation of the hadronic light-by-light contribution to $(g-2)_\mu$ at the SU(3) flavor-symmetric point $m_\pi=m_K\simeq 420\,$MeV. The representation used is based on coordinate-space perturbation theory, with all QED elements of the relevant Feynman diagrams implemented in continuum, infinite Euclidean space. As a consequence, the effect of using finite lattices to evaluate the QCD four-point function of the electromagnetic current is exponentially suppressed. Thanks to the SU(3)-flavor symmetry, only two topologies of diagrams contribute, the fully connected and the leading disconnected. We show the equivalence in the continuum limit of two methods of computin…

symmetry: flavorParticle physicstopologymagnetic momentPhysics and Astronomy (miscellaneous)Feynman graphHigh Energy Physics::LatticeLattice field theoryHadronExtrapolationhep-lat01 natural sciencesspace: Euclideansymbols.namesakePionHigh Energy Physics - LatticeLattice (order)quantum chromodynamics0103 physical sciencesquantum electrodynamicsFeynman diagramcontinuum limit010306 general physicsEngineering (miscellaneous)perturbation theorylatticeParticle Physics - PhenomenologyQuantum chromodynamicsPhysicsform factor: transitioncurrent: electromagneticfinite size: effect[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]010308 nuclear & particles physicslattice field theoryphoton photon: scatteringhep-phParticle Physics - LatticeLattice QCDsuppressionHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]symbolsflavor: SU(3)n-point function: 4
researchProduct

Developments in the position-space approach to the HLbL contribution to the muon $g-2$ on the lattice

2019

The measurement of the anomalous magnetic moment of the muon and its prediction allow for a high-precision test of the Standard Model (SM). In this proceedings article we present ongoing work combining lattice QCD and continuum QED in order to determine an important SM contribution to the magnetic moment, the hadronic light-by-light contribution. We compute the quark-connected contribution in the Mainz position-space approach and investigate the long-distance part of our data using calculations of the $\pi^0$-pole and charged pion loop contributions.

Particle physicsHigh Energy Physics::LatticeHadronhep-latFOS: Physical sciencesPosition and momentum space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)PionHigh Energy Physics - LatticeLattice (order)0103 physical sciences010306 general physicsParticle Physics - PhenomenologyPhysicsMuonMagnetic momentAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)hep-phParticle Physics - LatticeLattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct

Hadronic light-by-light contribution to $(g-2)_\mu $ from lattice QCD: a complete calculation

2021

The European physical journal / C 81(7), 651 (2021). doi:10.1140/epjc/s10052-021-09455-4

Particle physicsmagnetic momentPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeHadronNuclear TheoryLattice (group)hep-lat01 natural sciences530pi: massPionHigh Energy Physics - Latticemuon0103 physical sciencesddc:530010306 general physicsEngineering (miscellaneous)latticeParticle Physics - PhenomenologyPhysicsMuon010308 nuclear & particles physicsScattering[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics::Phenomenologylattice field theoryphoton photon: scatteringhep-phParticle Physics - LatticeFunction (mathematics)Lattice QCDtensionQuadrature (mathematics)High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentn-point function: 4statistical
researchProduct

Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization

2020

We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…

1 [isospin]Particle physicsdecay constant [rho(770)]High Energy Physics::Latticeclover [fermion]energy spectrumFOS: Physical sciencesWilson [quark]01 natural sciencesphase shiftHigh Energy Physics - LatticePionvector [correlation function]Charge radius0103 physical sciencesmagnetic moment [muon]quantum chromodynamicsmass [rho(770)]hadronic [vacuum polarization]ddc:530Vacuum polarizationflavor: 2 [quark]010306 general physicsnumerical calculationscharge radius [pi]PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics - Lattice (hep-lat)scatteringlattice field theoryLattice QCDFermionBreit-Wignermass dependence [quark]form factor [pi]effect [finite size]vector [current]quantizationPhysical Review D
researchProduct

Nucleon structure from Lattice QCD using a nearly physical pion mass

2014

We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.

QuarkNuclear and High Energy PhysicsParticle physicsNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryLattice field theoryFOS: Physical sciencesLattice QCDNuclear Theory (nucl-th)Nucleon structureNuclear physicssymbols.namesakeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Pauli exclusion principlePionddc:530Nuclear ExperimentPhysicsQuantum chromodynamicsIsovectorHigh Energy Physics - Lattice (hep-lat)Form factorsLattice QCDHigh Energy Physics - PhenomenologysymbolsHigh Energy Physics::ExperimentNucleonPhysics Letters B
researchProduct

Hadron structure from lattice QCD

2014

Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.

Quantum chromodynamicsPhysicsParticle physicsNuclear TheoryHigh Energy Physics - Lattice (hep-lat)HadronStructure (category theory)FOS: Physical sciencesCharge (physics)ObservableLattice QCDNuclear Theory (nucl-th)High Energy Physics - PhenomenologyMatrix (mathematics)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeNucleonAIP Conference Proceedings
researchProduct

Computing the nucleon Dirac radius directly at $Q^2=0$

2016

We describe a lattice approach for directly computing momentum derivatives of nucleon matrix elements using the Rome method, which we apply to obtain the isovector magnetic moment and Dirac radius. We present preliminary results calculated at the physical pion mass using a 2HEX-smeared Wilson-clover action. For removing the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used.

PhysicsPionIsovectorMagnetic momentHigh Energy Physics::LatticeLattice (order)Excited stateQuantum electrodynamicsNuclear TheoryGround stateNucleonProceedings of 34th annual International Symposium on Lattice Field Theory — PoS(LATTICE2016)
researchProduct

Light-by-light forward scattering amplitudes in Lattice QCD

2017

We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by $\gamma^* \gamma^* \to$ hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce our data. In particular, the sum rules considered in this study imply relations between meson$-\gamma\gamma$ couplings and provide valuable information about individual form factors which are often used to estimate the meson-pole contributions to the hadronic light-by-light contribution to …

PhysicsParticle physicsMuon010308 nuclear & particles physicsForward scatterComputer Science::Information RetrievalPhysicsQC1-999HadronHigh Energy Physics - Lattice (hep-lat)Lattice (group)FOS: Physical sciencesLattice QCD01 natural sciencesHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhenomenology (particle physics)
researchProduct

Direct calculation of hadronic light-by-light scattering

2015

We report calculations of hadronic light-by-light scattering amplitudes via lattice QCD evaluation of Euclidean four-point functions of vector currents. These initial results include only the fully quark-connected contribution. Particular attention is given to the case of forward scattering, which can be related via dispersion relations to the $\gamma^* \gamma^* \to$ hadrons cross section, and thus allows lattice data to be compared with phenomenology. We also present a strategy for computing the hadronic light-by-light contribution to the muon anomalous magnetic moment.

PhysicsQuantum chromodynamicsParticle physicsMuonAnomalous magnetic dipole momentNuclear TheoryLattice field theoryHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesLattice QCDLight scatteringScattering amplitudeNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics::ExperimentPhenomenology (particle physics)
researchProduct

Lattice QCD study of the $H$ dibaryon using hexaquark and two-baryon interpolators

2019

Physical review / D 99(7), 074505 (2019). doi:10.1103/PhysRevD.99.074505

Particle physicsnucl-thNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryLattice field theoryFOS: Physical scienceshep-latCorrelation function (quantum field theory)530Computer Science::Digital Libraries01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesBound stateddc:530010306 general physicsParticle Physics - PhenomenologyQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)hep-phParticle Physics - LatticeLattice QCDRest frameBaryonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryIsospin
researchProduct

Parton distributions and lattice QCD calculations: A community white paper

2018

Progress in particle and nuclear physics 100, 107 - 160 (2018). doi:10.1016/j.ppnp.2018.01.007

QuarkNuclear and High Energy PhysicsParticle physicsquark: distribution functiondata analysis methodHigh Energy Physics::LatticeLattice field theoryhadron: spinFOS: Physical sciencesparton: distribution functionPartonLattice QCD01 natural sciences530hard scatteringHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)benchmarkFactorization0103 physical sciencesquantum chromodynamicsquantum chromodynamics: factorizationddc:530010306 general physicsGlobal QCD fitsQuantum chromodynamicsPhysicspolarizationgluon: distribution function010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologylattice field theory[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat]ObservableLattice QCDGluonHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentUnpolarized/polarized parton distribution functions (PDFs)
researchProduct

Hadronic light-by-light scattering amplitudes from lattice QCD versus dispersive sum rules

2017

The hadronic contribution to the eight forward amplitudes of light-by-light scattering ($\gamma^*\gamma^*\to \gamma^*\gamma^*$) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are compared to a model of the $\gamma^*\gamma^*\to {\rm hadrons}$ cross sections in which the fusion process is described by hadronic resonances. Our results thus provide an important test for the model estimates of hadronic light-by-light scattering in the anomalous magnetic moment of the muon, $a_\mu^{\rm HLbL}$. Using simple parametrizations of the resonance $M\to \gamma^*\gamma^*$ transition form factors, we determine the corresponding monopole and dipole masses by performing a global fit to …

Quantum chromodynamicsPhysicsParticle physicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsScatteringHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFOS: Physical sciencesLattice QCD01 natural sciences530High Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)PionLattice (order)0103 physical sciencesddc:530High Energy Physics::Experiment010306 general physics
researchProduct

Isovector charges of the nucleon from 2+1-flavor QCD with clover fermions

2016

Physical review / D 95(7), 074508 (2017). doi:10.1103/PhysRevD.95.074508

Quantum chromodynamicsPhysicsParticle physicsIsovector010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)PropagatorFOS: Physical sciencesFermionApprox53001 natural sciencesHigh Energy Physics - LatticeExcited stateLattice (order)0103 physical sciencesddc:530010306 general physicsNucleon
researchProduct

The anomalous magnetic moment of the muon in the Standard Model

2020

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

Standard ModelNuclear Theorymagnetichigher-orderPhysics beyond the Standard ModelGeneral Physics and Astronomynucl-ex01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Subatomic Physicsquantum electrodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Vacuum polarizationNuclear Experiment (nucl-ex)Nuclear Experimentfundamental constant: fine structurePhysicsQuantum chromodynamicsQEDAnomalous magnetic dipole momentnew physicsJ-PARC LabHigh Energy Physics - Lattice (hep-lat)Electroweak interactionlattice field theoryParticle Physics - Latticehep-phObservableHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticle Physics - ExperimentParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-th530 Physicsdispersion relationg-2Lattice field theoryFOS: Physical scienceshep-latnonperturbative[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Muon magnetic momentNuclear Theory (nucl-th)High Energy Physics - Latticemuonquantum chromodynamics0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsactivity reportperturbation theoryParticle Physics - PhenomenologyMuonmuon: magnetic momentelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-ex010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringanomalous magnetic moment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentPhysics Reports
researchProduct

Lattice QCD calculation of hadronic light-by-light scattering

2015

We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270 to 450MeV, and contain so far only the diagrams with fully connected quark lines.

PhysicsQuantum chromodynamicsParticle physicsAnomalous magnetic dipole momentScatteringHigh Energy Physics::LatticeLattice field theoryNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)General Physics and AstronomyFOS: Physical sciencesLattice QCDLight scatteringScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticePionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentNuclear Experiment
researchProduct

High-precision calculation of the strange nucleon electromagnetic form factors

2015

We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors $G_E^s$ and $G_M^s$ in the kinematic range $0 \leq Q^2 \lesssim 1.2\: {\rm GeV}^2$. For the first time, both $G_E^s$ and $G_M^s$ are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecedented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the $z$-expansion and determine the strange electric and magnetic radii and magnetic moment. We compare our results to parity-violatin…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMagnetic momentNuclear Theory010308 nuclear & particles physicsScatteringLattice field theoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCDStrangeness01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciencesddc:530010306 general physicsNucleonNuclear Experiment
researchProduct

Hadronic light-by-light contribution to $$(g-2)_\mu $$ ( g - 2 ) μ from lattice QCD with SU(3) flavor symmetry

2020

We perform a lattice QCD calculation of the hadronic light-by-light contribution to $$(g-2)_\mu $$ ( g - 2 ) μ at the SU(3) flavor-symmetric point $$m_\pi =m_K\simeq 420\,$$ m π = m K ≃ 420 MeV. The representation used is based on coordinate-space perturbation theory, with all QED elements of the relevant Feynman diagrams implemented in continuum, infinite Euclidean space. As a consequence, the effect of using finite lattices to evaluate the QCD four-point function of the electromagnetic current is exponentially suppressed. Thanks to the SU(3)-flavor symmetry, only two topologies of diagrams contribute, the fully connected and the leading disconnected. We show the equivalence in the continu…

Computer Science::Digital LibrariesEuropean Physical Journal
researchProduct