0000000000229396

AUTHOR

Salla Mattola

showing 8 related works from this author

Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins

2022

Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodel…

11832 Microbiology and virologyparvovirusesvirusesvirus diseasesViral Nonstructural Proteinsbiochemical phenomena metabolism and nutritionVirus ReplicationinfektiotChromatinCell Linecellular proteinsParvoviridae InfectionsParvovirusHumans1182 Biochemistry cell and molecular biology3111 Biomedicineproteiinitparvovirukset
researchProduct

Nuclear entry and egress of parvoviruses.

2022

Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18–26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed b…

import and exportCell NucleusisäntäsolutviruksetparvovirusesNuclear Envelopenuclear pore complexesnucleusActive Transport Cell NucleusDNA Single-Strandednuclear envelopeVirus ReplicationMicrobiologyinfektiotParvovirusPhospholipasestumaNuclear PoreCapsid ProteinsMolecular BiologyparvoviruksetkapsidiMolecular microbiologyREFERENCES
researchProduct

Concepts to Reveal Parvovirus–Nucleus Interactions

2021

Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification…

Cell Nucleusanalysis of virus–chromatin interactionsHost Microbial InteractionsviruksetparvovirusesvirusesnucleusReviewmikroskopiaanalysis of protein–protein interactionsVirus ReplicationinfektiotMicrobiologyimaging of viral interactions and dynamicsQR1-502Parvoviridae InfectionsParvovirusMicekuvantaminentumaAnimalsHumansCapsid ProteinsproteiinitparvoviruksetViruses
researchProduct

Persistence of Human Bocavirus 1 in Tonsillar Germinal Centers and Antibody-Dependent Enhancement of Infection

2021

Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown.

NASOPHARYNXviruksetPalatine TonsilFc receptorCHILDRENvirus persistenceMonocytesHuman bocavirusCONGENITAL INSENSITIVITYBokavirusChildviruspersistenssi11832 Microbiology and virology0303 health sciencesB-LymphocytesbiologyHuman bocavirusvasta-aineetDENGUE-VIRUS-INFECTIONrespiratory systemMiddle AgedQR1-5023. Good healthLymphatic systemB-CELLSChild PreschoolAntibodyCELL-LINE U937HUMAN PARVOVIRUSResearch ArticleAdultAdolescentEndosomesMicrobiologyinfektiotVirusHost-Microbe BiologyParvoviridae Infections03 medical and health sciencesYoung AdultImmune systemnielurisaVirologytonsilsHumansAntibody-dependent enhancementRESPIRATORY VIRUSESparvovirukset030304 developmental biologyAgedRECEPTOR030306 microbiologyparvovirusInfant NewbornGerminal centerInfantbiology.organism_classificationGerminal CenterAntibody-Dependent Enhancementrespiratory tract diseasesgerminal centerImmunologyDNA Viralbiology.protein1182 Biochemistry cell and molecular biology3111 Biomedicinein situ hybridizationADEB-soluTRACTmBio
researchProduct

Functional roles of the membrane-associated AAV protein MAAP

2021

AbstractWith a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclea…

SciencevirusesGenetic VectorsBiologyVirus ReplicationGenomeinfektiotArticleVirusViral Proteins03 medical and health scienceschemistry.chemical_compoundCapsidGene therapyPlasmidProtein sequencingHumansGeneparvovirukset030304 developmental biology0303 health sciencesMultidisciplinaryMolecular engineeringVirus Assembly030302 biochemistry & molecular biologyQVirionRMembrane ProteinsTranslation (biology)DependovirusCell biologyCapsidchemistryMedicineCapsid ProteinsproteiinitDNAPlasmidskapsidi
researchProduct

Quantitative microscopy reveals stepwise alteration of chromatin structure during herpesvirus infection

2019

During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening arou…

viruseslcsh:QR1-502Herpesvirus 1 HumanmikroskopiaVirus ReplicationinfektiotElectronMicrobiologylcsh:MicrobiologyArticleFluorescenceCell LineBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologyherpes simplex -virustumaChlorocebus aethiopsAnimalsHumansherpesviruksetVero CellsTomographyVirus ReleaseCell NucleusMicroscopyTomography X-RayHerpesvirus 1nuclear egressHerpesviridae InfectionsHSV-1ChromatinMicroscopy ElectronInfectious DiseasesMicroscopy FluorescencetumaegressKasvibiologia mikrobiologia virologia - Plant biology microbiology virologyX-RaykromatiiniSexually Transmitted InfectionschromatinInfectionHuman
researchProduct

Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane

2021

Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although …

virusesGene ExpressionVirus ReplicationPathology and Laboratory Medicineherpes simplex -virusChlorocebus aethiopsCapsidsMedicine and Health SciencesSimplexvirusBiology (General)Mass DiffusivityStainingChromosome BiologyPhysicsChromatinChemistryMedical MicrobiologyViral PathogensPhysical SciencesVirusesHerpes Simplex Virus-1EpigeneticsCellular Structures and OrganellesPathogenskapsidiResearch ArticleHerpesvirusesNuclear EnvelopeQH301-705.5Biological Transport ActiveViral StructureResearch and Analysis MethodsinfektiotMicrobiologydiffuusio (fysikaaliset ilmiöt)CapsidNuclear MembraneVirologyGeneticsAnimalsherpesviruksetVero CellsMicrobial PathogensCell NucleusChemical PhysicsOrganismsBiology and Life SciencesHerpes SimplexCell Biologybiochemical phenomena metabolism and nutritionRC581-607Viral ReplicationHerpes Simplex VirusNuclear StainingSpecimen Preparation and TreatmentImmunologic diseases. AllergyDNA viruses
researchProduct

G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids

2022

The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages…

G2/M checkpointnuclear egress of capsidsgeenitisäntäsolutcyclin B1canine parvovirusapoptosisApoptosisCRM1Crm1bakteeritsolut1182 Biochemistry cell and molecular biology3111 BiomedicineCanine parvovirusparvoviruksetNuclear egress of capsidssolukiertosolubiologia
researchProduct