0000000000230798

AUTHOR

Anindya Ghosh

showing 13 related works from this author

Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at s=13 TeV with the ATLAS detector

2019

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of s=13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb −1 . A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times bran…

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Large Hadron Collider010308 nuclear & particles physicsBranching fractionMonte Carlo methodATLAS experimentResonance01 natural sciencesmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsBosonPhysics Letters B
researchProduct

Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at s=13  TeV

2019

This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV 500 MeV and vertical bar ...

Quantum chromodynamicsQuarkPhysicsLarge Hadron Collider010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryHigh Energy Physics::Phenomenology01 natural sciencesCharged particleGluonNuclear physicsFragmentation (mass spectrometry)0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsPhysical Review D
researchProduct

Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

2019

The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas fac…

Wire chambers (MWPCdrift tube13000 GeV-cmsPhysics::Instrumentation and DetectorsmuonsTracking (particle physics)01 natural sciences030218 nuclear medicine & medical imagingHigh Energy Physics - ExperimentSubatomär fysikMWPCHigh Energy Physics - Experiment (hep-ex)Gaseous detectors0302 clinical medicineWire chambersDrift tubesSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]tracking detectorProportional chambersmomentum resolutionInstrumentationImage resolutionMathematical Physicsdrift tubesPhysicsLarge Hadron ColliderDrift chamberstrack data analysisMuon spectrometersResolution (electron density)DetectorSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Wire chambers (MWPC Thin-gap chambers drift chambers drift tubes proportional chambers etc)medicine.anatomical_structureCERN LHC Collproportional chambers etc)Gaseous detectors; Muon spectrometers; Particle tracking detectors (gaseous detectors); Wire chambers (MWPC thin-gap chambers drift chambers drift tubes proportional chambers etc)MDT chambersWire chambers (MWPC)LHCcolliding beams [p p]Particle Physics - Experimentp p: scatteringspectrometer [muon]Ciências Naturais::Ciências Físicas530 PhysicsParticle tracking detectors (Gaseous detectors):Ciências Físicas [Ciências Naturais]610FOS: Physical sciencesdrift chamber [muon]gas [monitoring]programming03 medical and health sciencesOpticsAtlas (anatomy)Muon spectrometer0103 physical sciencesCalibrationmedicinemuon: drift chamberGaseous detectorddc:610drift chambersHigh Energy Physicsspatial resolutionMuonScience & Technology010308 nuclear & particles physicsbusiness.industryhep-ex:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Thin-gap chamberscalibrationmonitoring: gasExperimental High Energy Physicsbusinessp p: colliding beamsmuon: spectrometerexperimental results
researchProduct

Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data

2019

This paper describes the reconstruction of electrons and photons with the ATLAS detector, employed for measurements and searches exploiting the complete LHC Run 2 dataset. An improved energy clustering algorithm is introduced, and its implications for the measurement and identification of prompt electrons and photons are discussed in detail. Corrections and calibrations that affect performance, including energy calibration, identification and isolation efficiencies, and the measurement of the charge of reconstructed electron candidates are determined using up to 81 fb−1 of proton-proton collision data collected at √s=13 TeV between 2015 and 2017.

electronPhoton:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Protonparticle identification: efficiency13000 GeV-cmsElectron01 natural sciences7. Clean energyParticle identificationphoton: particle identification030218 nuclear medicine & medical imagingParticle identification methods; Performance of high energy physics detectorsHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Particle identification methods0302 clinical medicineSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]InstrumentationMathematical PhysicsPhysicsSettore FIS/01Performance of high energy physics detectorsLarge Hadron ColliderDetectorphotonATLAScalibration [energy]medicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollLHCParticle Physics - Experimentperformancep p: scatteringCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesNuclear physicsParticle identification method03 medical and health sciencesparticle identification: performanceAtlas (anatomy)0103 physical sciencesmedicineCalibrationddc:610High Energy PhysicsScience & Technologyelectron: particle identification010308 nuclear & particles physicshep-exenergy: calibrationefficiencyExperimental High Energy PhysicsPerformance of High Energy Physics Detectorsp p: colliding beamsexperimental results
researchProduct

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at s…

2019

A search for a right-handed gauge boson WR, decaying into a boosted right-handed heavy neutrino NR, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton–proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{−1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared to the expected signal. No significant d…

PhysicsNuclear and High Energy PhysicsGauge bosonParticle physicsLarge Hadron ColliderProton010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::Phenomenologyddc:500.201 natural sciencesMomentummedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineHigh Energy Physics::ExperimentLHCHeavy neutrino010306 general physicsLeptonPhysics Letters B
researchProduct

Search for the Higgs boson decays H → ee and H → eμ in pp collisions at s=13TeV with the ATLAS detector

2020

Searches for the Higgs boson decays H -> ee and H -> e mu are performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in pp collisions a ...

PhysicsNuclear and High Energy PhysicsParticle physicsLuminosity (scattering theory)Physics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::Phenomenology7. Clean energy01 natural sciencesSearch for the Higgs bosonmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesHiggs bosonmedicineHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment

2019

Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the standard model via vector boson fusion, Z(ℓℓ)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1  fb⁻¹ of pp collisions at a center-of-mass energy of √s = 13  TeV at the LHC. In combination with the results at √s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26(0.17-0.05+0.07) at 95% confidence level is observed (expected).

WIMP nucleon: scatteringMATÉRIA ESCURA13000 GeV-cmsGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterVector bosonHigh Energy Physics - Experimentdark matter [WIMP]Subatomär fysikHiggs particle: hadroproductionHigh Energy Physics - Experiment (hep-ex)vector boson: fusionSubatomic Physicsscattering [p p]S126.7[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Z0: hadronic decayvector boson: associated productionPhysicsS030DMPLarge Hadron Colliderhadronic decay [Z0]ATLAS experimentSettore FIS/01 - Fisica SperimentaleConfidence levelsBranching ratioATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Vector bosonmedicine.anatomical_structureThe standard modelCERN LHC CollHiggs particle: branching ratio: upper limitHiggs bosonLHCgamma-ray excesscolliding beams [p p]Particle Physics - ExperimentS126:Desig=7Particle physicsp p: scattering530 PhysicsCiências Naturais::Ciências FísicasHiggs bosonDark matter:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentHiggs particle: invisible decaybranching ratio: upper limit [Higgs particle]LHC ATLAS High Energy Physicsddc:500.2fusion [vector boson]530Standard ModelmodelsParticle dark matterAtlas (anatomy)0103 physical sciencesmedicineDark matterddc:530High Energy Physics010306 general physicshadronic decay [W]Ciencias ExactasATLAS CollaborationW: hadronic decayScience & TechnologyBranching fractionscattering [WIMP nucleon]hep-exATLAS detectorsHigh Energy Physics::Phenomenology:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaleptonic decay [Z0]Higgs Boson decayInvisible decaysExperimental High Energy PhysicsZ0: leptonic decayExtensions of Higgs sectorDark matter particlesElementary Particles and Fieldshadroproduction [Higgs particle]associated production [vector boson]High Energy Physics::ExperimentHadron-hadron collisionsstatisticalp p: colliding beamsinvisible decay [Higgs particle]experimental results
researchProduct

Evidence for the production of three massive vector bosons with the ATLAS detector

2019

A search for the production of three massive vector bosons in proton–proton collisions is performed using data at TeV recorded with the ATLAS detector at the Large Hadron Collider in the years 2015–2017, corresponding to an integrated luminosity of 79.8 fb−1. Events with two same-sign leptons ℓ (electrons or muons) and at least two reconstructed jets are selected to search for . Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for , while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for . Finally, events with four leptons are analysed to search for and .…

13000 GeV-cmsLarge hadron collider((n)jet dilepton) [final state]W: leptonic decay01 natural sciences7. Clean energySubatomär fysikvector boson: multiple productionElectroweak interactionscattering [p p]ATLAS LHC jets leptonsBoson((n)jet 3lepton) [final state]Collisionsmultiple production [W]Nuclear Experiment((n)jet 4lepton) [final state]Large Hadron ColliderPhysicsElectroweak interactionParticle physicslcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]muon: pair production(3lepton) [final state]CERN LHC CollProduction (computer science)colliding beams [p p]p p: scatteringCiências Naturais::Ciências FísicasLHC ATLAS High Energy PhysicsHIGH ENERGY PHYSICSProduction (computer science)same signddc:530pair production [electron]010306 general physicsW: hadronic decayScience & Technology010308 nuclear & particles physicsfinal state: ((n)jet dilepton)Z0: associated productionExperimental High Energy PhysicsW bosonp p: colliding beamslcsh:PhysicsPhysics::Instrumentation and DetectorsAtlas detectormeasured [channel cross section]High Energy Physics - Experiment//purl.org/becyt/ford/1 [https]electron: pair productionW: pair productionHigh Energy Physics - Experiment (hep-ex)final state: ((n)jet 3lepton)Subatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]associated production [Z0]BosonPhysicsproton–proton collisionsSettore FIS/01 - Fisica SperimentaleATLASfinal state: (3lepton)pair production [W]LHCchannel cross section: measuredParticle Physics - ExperimentjetsNuclear and High Energy PhysicsParticle physics530 PhysicsAtlas detector:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesmultiple production [vector boson]Computer Science::Digital Librariesvector boson: massive0103 physical sciencespair production [muon]hadronic decay [W]hep-exHigh Energy Physics::Phenomenology:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicafinal state: (4lepton)(4lepton) [final state]//purl.org/becyt/ford/1.3 [https]leptonic decay [Z0]final state: ((n)jet 4lepton)W: multiple productionleptonic decay [W]Z0: leptonic decayPhysics::Accelerator PhysicsSpace scienceHigh Energy Physics::Experimentmassive [vector boson]Hadron-hadron collisionsexperimental results
researchProduct

Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton–proton collisions at s=13TeV with the ATLA…

2020

A test of CP invariance in Higgs boson production via vector-boson fusion is performed in the H → ττ decay channel. This test uses the Optimal Observable method and is carried out using 36.1 fb−1 of √s = 13 TeV proton–proton collision data collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described by an effective field theory, in which the parameter ˜ d governs the strength of CP violation. No sign of CP violation is observed in the distributions of the Optimal Observable, and ˜ d is constrained to the interval [−0.090, 0.035] at the 68% confidence level (CL), compared to an expected interval …

PhysicsNuclear and High Energy PhysicsGauge bosonParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyATLAS experimentElectroweak interaction01 natural sciencesVector bosonStandard Model0103 physical sciencesHiggs bosonCP violationHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

ATLAS data quality operations and performance for 2015-2018 data-taking

2020

The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide, the data must be scrutinised to ensure they are clean from any hardware or software related issues that may compromise their integrity. Prompt identification of these issues permits fast action to investigate, correct and potentially prevent future such problems that could render the data unusable. This is achieved through the monitoring of detector-level quantities and reconstructed collision ev…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]DATAPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsData managementdetector-systems performance01 natural sciencesSERVICEHigh Energy Physics - ExperimentSubatomär fysik//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)SoftwareCERNSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsOperationLarge detector-systems performanceSettore FIS/01Data processingLarge Hadron ColliderAtlas (topology)ROOT-S=13 TEVDetectorInstrumentation and Detectors (physics.ins-det)ATLASGNAM:Nuclear and elementary particle physics: 431 [VDP]qualityLarge detector systems for particle and astroparticle physics; Large; detector-systems performance; ROOT-S=13 TEV; COLLISIONS; SERVICE; SEARCH; GNAMParticle Physics - ExperimentperformanceCOLLISIONS530 PhysicsCiências Naturais::Ciências FísicasReal-time computing:Ciências Físicas [Ciências Naturais]610FOS: Physical sciencesprogrammingSEARCH0103 physical sciencesddc:610High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsScience & TechnologyLarge detector systems for particle and astroparticle physics; Large detector-systems performance010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsData quality//purl.org/becyt/ford/1.3 [https]Collision530 PhysikmonitoringefficiencyData qualityExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicLargedata managementbusiness
researchProduct

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

2021

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWFW and FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq and FAPESP, Brazil, NSERC, NRC, and CFI, Canada, CERN and ANID, Chile, CAS, MOST, and NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, and VSC CR, Czech Republic, DNRF and DNSRC, Denmark, IN2P3-CNRS and CEA-DRF/IRFU, France, SRNSFG, Georgia, BMBF, HGF, and MPG, Germany, GSRT, Greece, RGC and Hong Kong SAR, China, ISF and Benoziyo Center, Israel, INFN, Italy, MEXT and JSPS, Japan, CNR…

Systemgap [rapidity]heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Performanceangular correlation: long-rangeHadronMonte Carlo method01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)PpCollisionscorrelation function: two-particleSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentcalorimeter: forward spectrometerSettore FIS/01Physicsangular correlation: two-particletwo-particle [correlation function]Large Hadron Collider4. EducationATLAS experimentHeavy-Ion CollisionsMonte Carlo [numerical calculations]ATLASCalorimeterforward spectrometer [calorimeter]CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]medicine.anatomical_structureMultiplicityflowPseudorapidityDistributionsLhcnumerical calculations: Monte CarloParticle Physics - Experimentcharged particle: tracks530 PhysicscollectiveFOS: Physical sciencesLHC ATLAS High Energy Physicstransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ionscharged particle: multiplicityNuclear physicsmultiplicity [charged particle]scattering [heavy ion]Atlas (anatomy)long-range [angular correlation]0103 physical sciencesmedicineFluctuationsNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonHigh Energy Physicsperipheral010306 general physicshadron hadron: interactioninteraction [hadron hadron]LHC; Particle Physics; Photonuclear interactionstwo-particle [angular correlation]tracks [charged particle]010308 nuclear & particles physicsFísicaDetectorMultiplicity (mathematics)boundary conditionrapidity: gapcorrelationExperimental High Energy Physicsexperimental resultsModelPhysical Review C
researchProduct

Measurement of the production cross section for a Higgs boson in association with a vector boson in the H → WW⁎ → ℓνℓν channel in pp collisions at s=…

2019

A measurement of the Higgs boson production cross sections via associated WH and ZH production using H -> WW* -> l nu l nu decays, where l stands for either an electron or a muon, is presente ...

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas detectorHigh Energy Physics::PhenomenologyElectron01 natural sciencesVector boson0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions at s=13 TeV with the ATLAS detect…

2019

A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb−1 of LHC proton–proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015–2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as b-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark Z′ model and, separately, on generic Gaussian-shape contributions to the mas…

PhysicsNuclear and High Energy PhysicsPhotonLarge Hadron Collider010308 nuclear & particles physicsAtlas detectorAtlas (topology)ATLAS experiment7. Clean energy01 natural sciencesNuclear physicsTransverse plane0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsLow MassPhysics Letters B
researchProduct