0000000000234549

AUTHOR

N. Shalanda

showing 10 related works from this author

The optical instrumentation of the ATLAS Tile Calorimeter

2013

The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the oth…

PhysicsPhysics::Instrumentation and Detectorsbusiness.industryOptical instrumentationATLAS experimentScintillatorCentral regionCalorimeterNuclear physicsTile calorimeterOpticsmedicine.anatomical_structureAtlas (anatomy)Scintillation countermedicineHigh Energy Physics::ExperimentDetectors and Experimental TechniquesbusinessInstrumentationMathematical Physics
researchProduct

Testbeam studies of production modules of the ATLAS Tile Calorimeter

2009

We report test beam studies of {11\,\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\sim 70$~pe/GeV, exceeding the design goal by {40\,\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\,\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the respo…

PhysicsNuclear and High Energy PhysicsRange (particle radiation)MuonCalorimeter (particle physics)Hadron calorimeterPhysics::Instrumentation and Detectors010308 nuclear & particles physicsPerformanceHadronDetector01 natural sciencesElectromagnetic radiationNuclear physicsmedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesmedicineCalibrationHigh Energy Physics::Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

2010

A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV…

Physics - Instrumentation and DetectorsCiências Naturais::Ciências FísicasPhysics::Instrumentation and Detectors:Ciências Físicas [Ciências Naturais]Monte Carlo methodFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyPartícules (Física nuclear)Settore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentNuclear physicsCalorimetersHigh Energy Physics - Experiment (hep-ex)PionAtlas (anatomy)calorimeter methods ; pattern recognition ; cluster finding ; calibration and fitting methods ; calorimeters ; detector modelling and simulations0103 physical sciencesCalibrationmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Calorimeter methods010306 general physicsNuclear ExperimentInstrumentationMathematical PhysicsPhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)Science & TechnologyLarge Hadron Collider010308 nuclear & particles physicsPattern recognition cluster finding calibration and fitting methodsSettore FIS/01 - Fisica SperimentaleATLAS experimentInstrumentation and Detectors (physics.ins-det)Calorimetermedicine.anatomical_structureExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentBeam (structure)Journal of Instrumentation
researchProduct

Combined performance studies for electrons at the 2004 ATLAS combined test-beam

2010

In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…

Physics::Instrumentation and DetectorsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Transition radiation detectorsElectronsddc:500.201 natural sciencesParticle identificationNuclear physicsCalorimetersAtlas (anatomy)Particle tracking detectors0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorCalorimetermedicine.anatomical_structureTransition radiationBeamlineHigh Energy Physics::ExperimentBeam (structure)
researchProduct

Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV

2010

A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20 to 350 GeV and beam impact points and angles corresponding to pseudorapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsTest-beamHadronCalorimetry01 natural sciencesNuclear physicsAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentInstrumentationPhysicsRange (particle radiation)Large Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsATLASSuper Proton Synchrotronmedicine.anatomical_structurePseudorapidityCalibrationPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)Simulation
researchProduct

Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

2011

The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which i…

PhotonCiências Naturais::Ciências Físicastransition radiation detectors ; calorimeters ; large detector systems for particle and astroparticle physics ; particle tracking detectors ; solid-state detectorsPhysics::Instrumentation and Detectors:Ciências Físicas [Ciências Naturais]Transition radiation detectorsddc:500.201 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsCalorimetersOpticsAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WaferDetectors and Experimental Techniques010306 general physicsInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsDetectorSettore FIS/01 - Fisica SperimentaleCalorimetermedicine.anatomical_structureParticle tracking detectors (Solid-state detectors)High Energy Physics::ExperimentbusinessEnergy (signal processing)Beam (structure)
researchProduct

Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

2009

Çetin, Serkant Ali (Dogus Author) A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsHadronNuclear TheoryCalorimetry01 natural sciencesNuclear physicsPionAtlas (anatomy)0103 physical sciencesmedicineCalibration[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentInstrumentationPhysicsLarge Hadron Collider010308 nuclear & particles physicsDetectorATLASSuper Proton SynchrotronCalorimetermedicine.anatomical_structureCalibrationPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentTest beamSimulation
researchProduct

Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

2010

The response of pions and protons in the energy range of 20–180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron–scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-indu…

Nuclear and High Energy PhysicsProtonTest-beamPion–proton responsePhysics::Instrumentation and DetectorsHadronMonte Carlo methodNuclear TheoryHadronic shower development01 natural sciencesElectromagnetic radiationPartícules (Física nuclear)Nuclear physicsPion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationMonte Carlo simulationGEANT4Detectors de radiacióPhysicsCalorimeterLarge Hadron Collider010308 nuclear & particles physicsATLASLongitudinal shower profile for hadronsScintillation counterPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParametrization
researchProduct

A search for new physics in dijet mass and angular distributions in pp collisions at [subscript √s=7] TeV measured with the ATLAS detector

2011

A search for new interactions and resonances produced in LHC proton–proton (pp) collisions at a centre-of-mass energy ps = 7 TeV was performed with the ATLAS detector. Using a dataset with an integrated luminosity of 36 pb−1, dijet mass and angular distributions were measured up to dijet masses of 3.5 TeV and were found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% CL on various models for new physics: an excited quark is excluded for mass between 0.60 and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between 0.60 and 2.10 TeV and quantum black holes are excluded in models with six extra space–time dimensions for quantum gravity…

QuarkParticle physicsChiral ColorCiências Naturais::Ciências FísicasPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]General Physics and AstronomyFOS: Physical sciencesddc:500.2dijet; mass; pp collisionts; ATLAS detector5307. Clean energy01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Atlas (anatomy)Chiral color0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]String resonance010306 general physicsPhysicsQuantum chromodynamicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsParton DistributionsSettore FIS/01 - Fisica SperimentaleHigh Energy Physics::PhenomenologyFísicaHadron CollidersQCDmedicine.anatomical_structureExperimental High Energy Physicsddc:540ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGQuarkFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Mechanical construction and installation of the ATLAS tile calorimeter

2013

This paper summarises the mechanical construction andinstallation of the Tile Calorimeter for the ATLASexperiment at the Large Hadron Collider in CERN, Switzerland. The TileCalorimeter is a sampling calorimeter using scintillator as the sensitivedetector and steel as the absorber and covers the central region of the ATLASexperiment up to pseudorapidities ±1.7. The mechanical construction ofthe Tile Calorimeter occurred over a periodof about 10 years beginning in 1995 with the completionof the Technical Design Report and ending in 2006 with the installationof the final module in the ATLAS cavern. Duringthis period approximately 2600 metric tons of steel were transformedinto a laminated struc…

EngineeringLarge Hadron ColliderAtlas (topology)business.industryPhysics::Instrumentation and DetectorsNuclear engineeringATLAS experimentCalorimeters; Detector design and construction technologies and materialsNuclear physicsTile calorimeterCalorimetersPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesMechanical constructionDetector design and construction technologies and materialsNuclear ExperimentbusinessInstrumentationMathematical Physics
researchProduct