0000000000235529

AUTHOR

Alessandra Vitale

Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs

Primary and metastatic brain tumors are usually serious conditions with poor prognosis, which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve these objectives, progress must be made in the understanding of brain tumor biology, for example, how they resist natural defenses and therapeutic intervention. One resistance mechanism involves extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation and reprogram them by introducing their cargo. This consists of different molecules among which are microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target cells in the…

research product

The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19

The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts’ chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the dev…

research product

The neurochaperonopathies: Anomalies of the chaperone system with pathogenic effects in neurodegenerative and neuromuscular disorders

The chaperone (or chaperoning) system (CS) constitutes molecular chaperones, co-chaperones, and chaperone co-factors, interactors and receptors, and its canonical role is protein quality control. A malfunction of the CS may cause diseases, known as the chaperonopathies. These are caused by qualitatively and/or quantitatively abnormal molecular chaperones. Since the CS is ubiquitous, chaperonopathies are systemic, affecting various tissues and organs, playing an etiologic-pathogenic role in diverse conditions. In this review, we focus on chaperonopathies involved in the pathogenic mechanisms of diseases of the central and peripheral nervous systems: the neurochaperonopathies (NCPs). Genetic …

research product

Molecular chaperones and mirnas in epilepsy: Pathogenic implications and therapeutic prospects

Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising ca…

research product

Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells.

The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial−mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of…

research product

JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia.

In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The eff…

research product

The Challenging Riddle about the Janus-Type Role of Hsp60 and Related Extracellular Vesicles and miRNAs in Carcinogenesis and the Promises of Its Solution

Hsp60 is one of the most ancient and evolutionarily conserved members of the chaperoning system. It typically resides within mitochondria, in which it contributes to maintaining the organelle’s proteome integrity and homeostasis. In the last few years, it has been shown that Hsp60 also occurs in other locations, intracellularly and extracellularly, including cytosol, plasma-cell membrane, and extracellular vesicles (EVs). Consequently, non-canonical functions and interacting partners of Hsp60 have been identified and it has been realized that it is a hub molecule in diverse networks and pathways and that it is implicated, directly or indirectly, in the development of various pathological co…

research product

Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders

Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. …

research product