0000000000235973

AUTHOR

Peter G. Steeneken

0000-0002-5764-1218

Study of charge density waves in suspended 2H-TaS 2 and 2H-TaSe 2 by nanomechanical resonance

The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation. Degradation is an important parameter which has been shown to greatly influence the superconductivity in layered systems. Since the CDW state competes with the onset of superconductivity, it is expected that $T_{CDW}$ will also be affected by the degradation. Here, we probe the CDW phase transition by the mechanical resonances of suspended 2H-TaS…

research product

Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization

Chemical functionalization is a powerful approach to tailor the physical and chemical properties of two-dimensional (2D) materials, increase their processability and stability, tune their functionalities and, even, create new 2D materials. This is typically achieved through post-synthetic functionalization by anchoring molecules on the surface of an exfoliated 2D crystal, but it inevitably alters the long-range structural order of the material. Here we present a pre-synthetic approach that allows the isolation of crystalline, robust and magnetic functionalized monolayers of coordination polymers. A series of five isostructural layered magnetic coordination polymers based on Fe(ii) centres a…

research product

Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs)

Through rational chemical design, and thanks to the hybrid nature of metal−organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solventfree synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation o…

research product

Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6-based heterostructures

AbstractTwo-dimensional magnetic materials with strong magnetostriction are attractive systems for realizing strain-tuning of the magnetization in spintronic and nanomagnetic devices. This requires an understanding of the magneto-mechanical coupling in these materials. In this work, we suspend thin Cr2Ge2Te6 layers and their heterostructures, creating ferromagnetic nanomechanical membrane resonators. We probe their mechanical and magnetic properties as a function of temperature and strain by observing magneto-elastic signatures in the temperature-dependent resonance frequency near the Curie temperature, TC. We compensate for the negative thermal expansion coefficient of Cr2Ge2Te6 by fabrica…

research product

Magnetic order in 2D antiferromagnets revealed by spontaneous anisotropic magnetostriction

The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS$_{3}$ (M(II) = Fe, Co, Ni) can be probed via the anisotropy in the resonance frequency of rectangular membranes, mediated by a combination of anisotropic magnetostriction and spontaneous staggered magnetization. Density functional calculations followed by a derived orbital-resolved magnetic exchange analysis confirm and unravel the microscopic origin of this magnetiza…

research product

Tunable Strong Coupling of Mechanical Resonance between Spatially Separated FePS3 Nanodrums

Coupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these types of systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes of the magnetic 2D material FePS$_3$. We describe a tunable electromechanical mechanism for control over both the resonance frequency and the coupling strength using a gate voltage electrode under each membrane. We show that the coupling can be utilized for transferring data from one drum to the other by amplitude modulation. Finally, we also study the temperature dependence of the coupling, and in particul…

research product

Magnetic and electronic phase transitions probed by nanomechanical resonators

The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakly to magnetic and electronic probes. Here, we demonstrate that phase transitions in thin membranes of 2D antiferromagnetic FePS3, MnPS3 and NiPS3 can be probed mechanically via the temperature-dependent resonance frequency and quality factor. The observed relation between mechanical motion and antiferromagnetic order is shown to be mediated by the specific heat and reveals a strong dependence of the Néel temperature of…

research product

Defect-Free Chemical Functionalization of Magnetic Monolayers Based on Coordination Polymers

<p>Chemical functionalization has demonstrated to be a powerful approach to tailor the physical and chemical properties of two-dimensional (2D) materials, to increase their processability and</p> <p>stability, to add new functionalities and, even, to create new 2D materials. However, this post synthetic method – which involves the anchoring of molecules on the surface of an exfoliated 2D crystal – inevitably leads to defective materials, which lack long-range structural order. If defect-free functionalized monolayers are required, a radically new approach needs to be developed. Here we present a pre-synthetic method based on coordination chemistry that affords the isolatio…

research product

Controlling the anisotropy of a van der Waals antiferromagnet with light

Ultrafast optical control of magnetic anisotropy in a van der Waals antiferromagnet activates a sub-THz two-dimensional magnon.

research product

CCDC 2068294: Experimental Crystal Structure Determination

Related Article: Javier Lo��pez-Cabrelles, Samuel Man��as-Valero, In��igo J. Vito��rica-Yreza��bal, Makars S��is��kins, Martin Lee, Peter G. Steeneken, Herre S. J. van der Zant, Guillermo Mi��nguez Espallargas, Eugenio Coronado|2021|J.Am.Chem.Soc.|143|18502|doi:10.1021/jacs.1c07802

research product

CCDC 2068293: Experimental Crystal Structure Determination

Related Article: Javier Lo��pez-Cabrelles, Samuel Man��as-Valero, In��igo J. Vito��rica-Yreza��bal, Makars S��is��kins, Martin Lee, Peter G. Steeneken, Herre S. J. van der Zant, Guillermo Mi��nguez Espallargas, Eugenio Coronado|2021|J.Am.Chem.Soc.|143|18502|doi:10.1021/jacs.1c07802

research product

CCDC 2068295: Experimental Crystal Structure Determination

Related Article: Javier Lo��pez-Cabrelles, Samuel Man��as-Valero, In��igo J. Vito��rica-Yreza��bal, Makars S��is��kins, Martin Lee, Peter G. Steeneken, Herre S. J. van der Zant, Guillermo Mi��nguez Espallargas, Eugenio Coronado|2021|J.Am.Chem.Soc.|143|18502|doi:10.1021/jacs.1c07802

research product