0000000000236765

AUTHOR

Elina Dadu

0000-0001-5200-8256

showing 3 related works from this author

Integrin-mediated Cell Adhesion to Type I Collagen Fibrils

2004

In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, α1β1 and α2β1 integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin α2I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin α1I and α2I domain avidity to collagen and to lower …

fibrilsIntegrinsintegrinRecombinant Fusion ProteinsImmunoelectron microscopyIntegrinCHO Cellsmacromolecular substancesIn Vitro TechniquesFibrilBiochemistryCollagen Type IIntegrin alpha1beta1Collagen receptorCricetinaeCell AdhesionAnimalsHumansMicroscopy ImmunoelectronCell adhesionMolecular BiologybiologyChemistryFibrillogenesisCell BiologycollagensCell biologyCollagen type I alpha 1Biochemistrybiology.proteinCattleIntegrin alpha2beta1Type I collagenJournal of Biological Chemistry
researchProduct

Interactions of α2β1 integrin and its ligands, type I collagen and echovirus 1

2015

integriinitreseptoritenterovirusintegrinspektroskopiakollageenitlipiditkollageenisäikeetsolukalvotenteroviruksetcollagen fibrilsRaman spectroscopylipid membranesECHO-viruksetsoluväliaineendosytoosimolecular interactions
researchProduct

Raman Spectroscopic Signatures of Echovirus 1 Uncoating

2014

ABSTRACT In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact v…

Hot TemperatureEchovirusEndosomeImmunologyBiologySpectrum Analysis Ramanmedicine.disease_causeMicrobiologyVirusViral Proteinssymbols.namesakeProtein structureMicroscopy Electron TransmissionVirus UncoatingVirologyChlorocebus aethiopsmedicineAnimalsVero CellsStructure and AssemblyVirus UncoatingVirionRNAsecondary structureVirologyEnterovirus B Humanexternalized polypeptideCapsidInsect ScienceBiophysicssymbolsRNA Viralpod mottle virusRaman spectroscopyJournal of Virology
researchProduct