0000000000237109

AUTHOR

Marie-ange Delrue

showing 4 related works from this author

9q33.3q34.11 microdeletion: new contiguous gene syndrome encompassing STXBP1, LMX1B and ENG genes assessed using reverse phenotyping

2016

International audience; The increasing use of array-CGH in malformation syndromes with intellectual disability could lead to the description of new contiguous gene syndrome by the analysis of the gene content of the microdeletion and reverse phenotyping. Thanks to a national and international call for collaboration by Achropuce and Decipher, we recruited four patients carrying de novo overlapping deletions of chromosome 9q33.3q34.11, including the STXBP1, the LMX1B and the ENG genes. We restrained the selection to these three genes because the effects of their haploinsufficency are well described in the literature and easily recognizable clinically. All deletions were detected by array-CGH …

0301 basic medicineMale[ SDV.MHEP.PED ] Life Sciences [q-bio]/Human health and pathology/PediatricsHaploinsufficiencycerebral hypomyelinationwest-syndromeBioinformaticsCraniofacial Abnormalities0302 clinical medicineIntellectual disabilitySTXBP1ChildGenetics (clinical)Nail patella syndromeGeneticsEndoglinSyndrome3. Good healthdevelopmental delayPhenotypeintellectual disabilityMedical geneticsFemaleChromosome DeletionHaploinsufficiencyChromosomes Human Pair 9medicine.medical_specialtyAdolescentLIM-Homeodomain ProteinsBiologyContiguous gene syndromeArticle03 medical and health sciencesMunc18 ProteinsGenetic linkageGeneticsmedicineHumansde-novo mutations[SDV.MHEP.PED]Life Sciences [q-bio]/Human health and pathology/PediatricsdiseaseEpilepsyinfantile epileptic encephalopathyassociationdeletionsmedicine.diseaseHuman genetics030104 developmental biologynail-patella syndrome030217 neurology & neurosurgeryTranscription Factors
researchProduct

The 2q37-deletion syndrome: an update of the clinical spectrum including overweight, brachydactyly and behavioural features in 14 new patients

2012

International audience; The 2q37 locus is one of the most commonly deleted subtelomeric regions. Such a deletion has been identified in >100 patients by telomeric fluorescence in situ hybridization (FISH) analysis and, less frequently, by array-based comparative genomic hybridization (array-CGH). A recognizable ‘2q37-deletion syndrome’ or Albright’s hereditary osteodystrophy-like syndrome has been previously described. To better map the deletion and further refine this deletional syndrome, we formed a collaboration with the Association of French Language Cytogeneticists to collect 14 new intellectually deficient patients with a distal or interstitial 2q37 deletion characterized by FISH and …

AdultMaleCandidate geneAdolescentDNA Copy Number Variations[SDV]Life Sciences [q-bio]Chromosome DisordersLocus (genetics)BiologyFibrous Dysplasia PolyostoticBioinformaticsArticleYoung Adult03 medical and health sciences0302 clinical medicineIntellectual DisabilityGeneticsmedicineHumansChildGenetic Association StudiesGenetics (clinical)030304 developmental biologyKIF1AGeneticsBehaviorComparative Genomic Hybridization0303 health sciences[ SDV ] Life Sciences [q-bio]medicine.diagnostic_testBrachydactylyBrachydactylyChromosome MappingOverweightSubtelomeremedicine.disease[SDV] Life Sciences [q-bio]Child PreschoolChromosomes Human Pair 2AutismFemaleChromosome Deletion030217 neurology & neurosurgeryComparative genomic hybridizationFluorescence in situ hybridizationEuropean Journal of Human Genetics
researchProduct

Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

2016

International audience; Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such …

0301 basic medicineMalePathologyMethyl-CpG-Binding Protein 2[SDV]Life Sciences [q-bio]030105 genetics & heredityCorpus callosumLateral ventricles0302 clinical medicineGene DuplicationIKBKGFLNAChildGenetics (clinical)GeneticsBrain Diseasesmedicine.diagnostic_testMiddle AgedPrognosisMagnetic Resonance ImagingHypotonia3. Good healthPedigree[SDV] Life Sciences [q-bio]medicine.anatomical_structurePhenotypeXq28 duplicationChild PreschoolFemalemedicine.symptomAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesAdolescentGenotypeBiologygenotype-phenotype correlationWhite matter03 medical and health sciencesYoung AdultGeneticsmedicineHumansGenetic Association StudiesChromosomes Human X[ SDV ] Life Sciences [q-bio]Infant NewbornInfantMagnetic resonance imagingHyperintensitynervous system diseasesMental Retardation X-LinkedMECP2 gene030217 neurology & neurosurgeryAmerican journal of medical genetics. Part A
researchProduct

Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU

2017

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, an…

[SDV.GEN]Life Sciences [q-bio]/GeneticsRepressor Proteins/geneticsddc:618Neurodevelopmental Disorders/geneticsHeterogeneous-Nuclear Ribonucleoproteins/geneticsHeterogeneous-Nuclear RibonucleoproteinsChromosomesRepressor ProteinsPhenotypeChromosomes Human Pair 1Neurodevelopmental DisordersMutationGeneticsPair 1HumansGenetics(clinical)Chromosome Deletion[ SDV.GEN ] Life Sciences [q-bio]/GeneticsOriginal InvestigationHuman
researchProduct