0000000000237688

AUTHOR

Miguel Flores-bellver

0000-0003-3421-3699

showing 4 related works from this author

Ethanol-Induced Oxidative Stress Modifies Inflammation and Angiogenesis Biomarkers in Retinal Pigment Epithelial Cells (ARPE-19): Role of CYP2E1 and …

2020

The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELIS…

0301 basic medicineRetinal degenerationProgrammed cell deathPhysiologyAngiogenesisClinical BiochemistryTerapéuticaretinal pigment epitheliumdegenerationInflammationmedicine.disease_causeFisiologíaDegeneración macularBiochemistryArticle03 medical and health sciencesTratamiento médico0302 clinical medicineMedicina preventivahomeostasismedicineoxidative stressHomeostasisCYP2E1Molecular BiologyRetinal pigment epitheliumchemistry.chemical_classificationReactive oxygen speciesRetinal pigment epitheliumChemistryCell growthlcsh:RM1-950Cell Biologymedicine.diseaseCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. PharmacologyOxidative stress030220 oncology & carcinogenesisDegenerationOftalmologíamedicine.symptomOxidative stress
researchProduct

Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicl…

2018

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines fo…

ectosomeectosomes; exosomes; extracellular vesicles; guidelines; microparticles; microvesicles; minimal information requirements; reproducibility; rigor; standardization; Histology; Cell Biology[SDV]Life Sciences [q-bio]minimal information requirementsectosomes; exosomes; extracellular vesicles; guidelines; microparticles; microvesicles; minimal information requirements; reproducibility; rigor; standardizationsize-exclusionectosomesMedicine and Health SciencesCELL-DERIVED MICROPARTICLESFIELD-FLOW FRACTIONATIONguidelinesrequirementscirculatingComputingMilieux_MISCELLANEOUSmicroparticlesManchester Cancer Research Centrelcsh:Cytologyextracellular vesicles; exosomes; ectosomes; microvesicles; minimal information requirements; guidelines; standardization; microparticles; rigor; reproducibilityPROSTATE-CANCERmicroparticleCell interactionmicrovesiclechromatographyPosition Paperextracellular vesiclesguidelineLife Sciences & Biomedicinemicrovesiclesectosomes exosomes extracellular vesicles guidelines microparticles microvesicles minimal information requirements reproducibility rigor standardizationMEMBRANE-VESICLESHistologyFETAL BOVINEEctosomes ; Exosomes ; Extracellular Vesicles ; Guidelines ; Microparticles ; Microvesicles ; Minimal Information Requirements ; Reproducibility ; Rigor ; StandardizationCIRCULATING MICROPARTICLES[SDV.BC]Life Sciences [q-bio]/Cellular Biologyexosomesddc:570exosomeSURFACE-PLASMON RESONANCEddc:610lcsh:QH573-671BiologyreproducibilitystandardizationInteracció cel·lularScience & TechnologyResearchInstitutes_Networks_Beacons/mcrcCell BiologyrigorCell membranesHUMAN URINARY EXOSOMESPREANALYTICAL PARAMETERSminimal information requirementSIZE-EXCLUSION CHROMATOGRAPHY1182 Biochemistry cell and molecular biologyextracellular vesicleHuman medicineMembranes cel·lulars
researchProduct

Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells.

2015

10 páginas, 5 figuras

0301 basic medicineVascular Endothelial Growth Factor AAngiogenesisretinal pigment epitheliumNeovascularization PhysiologicexosomesBiologyExosomesExosomeCell Line03 medical and health sciencesangiogenesismedicineHuman Umbilical Vein Endothelial CellsHumansRNA MessengerRetinal pigment epitheliumVEGF receptorsTube formationRetinal pigment epitheliumEthanolCell BiologyOriginal ArticlesMicrovesicleseye diseasesCell biologyEndothelial stem cellVascular endothelial growth factor AOxidative Stress030104 developmental biologymedicine.anatomical_structureReceptors Vascular Endothelial Growth FactorOxidative stressCell cultureMolecular MedicineOriginal ArticleAngiogenesissense organsJournal of cellular and molecular medicine
researchProduct

Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

2014

Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescenc…

Cancer ResearchImmunologyApoptosisRetinal Pigment EpitheliumMitochondrionBiologymedicine.disease_causeCell LineLipid peroxidationCellular and Molecular Neurosciencechemistry.chemical_compoundRetinal DiseasesmedicineAutophagyHumanschemistry.chemical_classificationReactive oxygen speciesAldehydesRetinal pigment epitheliumEthanolAutophagyRetinalEpithelial CellsCell BiologyCell biologyMitochondriaOxidative Stressmedicine.anatomical_structurechemistryBiochemistryMitochondrial fissionOriginal ArticleReactive Oxygen SpeciesOxidative stressCell Death & Disease
researchProduct