0000000000239923

AUTHOR

Heikki Papunen

Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds

The optically active defects in as-grown, high-pressure high-temperature-treated (HPHT), boron-doped, and synthetic diamonds (SD) grown with a nitrogen-getter, as well as of natural diamonds (ND), were characterized by absorption and luminescence spectroscopies using different excitation sources. The laser-excited photoluminescence (PL) spectra of SDs show numerous sharp lines characteristic for nickel-related centers, whereas NDs yield mainly broad PL bands. The emission from the nickel-related defects in NIR range increases and the maxima of the bands shift to lower energies with increasing temperature. Under UV and electron beam excitation, the yellow synthetic diamonds display green lum…

research product

Differentiation of natural and synthetic gem-quality diamonds by luminescence properties

Abstract Laser-excited time-resolved and UV-excited static photoluminescence (PL) as well as cathodoluminescence (CL) techniques were applied to identify the origin of diamonds. Samples represented natural faced and rough diamonds from diamond market and different kimberlites as well as the most common high pressure–high temperature (HPHT) and as-grown synthetic diamonds. The time-resolved PL spectra of natural and synthetic diamonds display clear mutual differences. The static PL and CL spectra of natural diamonds revealed emission bands caused by complex nitrogen–vacancy (N–V)-aggregates whereas the bands of synthetic diamonds reflect simple N–V-aggregates and nickel-containing defects. T…

research product