0000000000240135

AUTHOR

Hamdi Jamel Bouchech

A comparative study of best spectral bands selection systems for face recognition

Multispectral images (MI) have shown promising capabilities to solve problems resulting from high illumination variation in face recognition. However, the use of MI, with the huge number of captured spectral bands for each subject, is impractical unless a system for best spectral bands selection (BSBS) is used. In this work, first we give an up to date overview of the existing BSBS techniques proposed for face recognition. We aim to highlight the imporatnce of this component of MI based systems. The reviewed techniques are then experimented using the multispectral face database IRIS - M3 to compare their performances. To the best of our knowledge this is the first study that reviews and com…

research product

Dynamic best spectral bands selection for face recognition

In this paper, face recognition in uncontrolled illumination conditions is investigated. A twofold contribution is proposed. First, three state-of-art algorithms, namely Multiblock Local Binary Pattern (MBLBP), Histogram of Gabor Phase Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) are evaluated upon the IRIS-M3 face database to study their robustness against a high illumination variation conditions. Second, we propose to use visible multispectral images, provided by the same face database, to enhance the performance of the three mentioned algorithms. To reduce the high data dimensionality introduced by the use of multispectral images, we have designed a system t…

research product

Multilinear sparse decomposition for best spectral bands selection

Optimal spectral bands selection is a primordial step in multispectral images based systems for face recognition. In this context, we select the best spectral bands using a multilinear sparse decomposition based approach. Multispectral images of 35 subjects presenting 25 different lengths from 480nm to 720nm and three lighting conditions: fluorescent, Halogen and Sun light are groupped in a 3-mode face tensor T of size 35x25x2 . T is then decomposed using 3-mode SVD where three mode matrices for subjects, spectral bands and illuminations are sparsely determined. The 25x25 spectral bands mode matrix defines a sparse vector for each spectral band. Spectral bands having the sparse vectors with…

research product

Studies on the Effectiveness of Multispectral Images for Face Recognition: Comparative Studies and New Approaches

In this paper, we investigate face recognition in unconstrained illumination conditions. A twofold contribution is proposed: First, three state of the art algorithms, namely Multiblock Local Binary Pattern (MBLBP), Histogram of Gabor Phase Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) are challenged against the IRIS-M3 multispectral face data base to evaluate their robustness against high illumination variation. Second, we propose to enhance the Performance of the three mentioned algorithms, which has been drastically decreased because of the non-monotonic illumination variation that distinguishes the IRIS-M3 face database. Instead of the usual braod band images…

research product