0000000000240396

AUTHOR

Modris Roze

showing 7 related works from this author

Bi-Layer GaOHPc:PCBM/P3HT:PCBM Organic Solar Cell

2011

Materials scienceOrganic solar cellbusiness.industryOptoelectronicsHeterojunctionHybrid solar cellBi layerbusinessPolymer solar cellLinköping Electronic Conference Proceedings
researchProduct

Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell

2012

Abstract The bulk heterojunction approach appears to be one of the most promising concepts of creating efficient, low cost and easily producible organic solar cells. For this purpose one of the best materials was regioregular poly-3-hexylthiophene (P3HT), which is widely used as a donor molecule and a hole transporter, with soluble fullerene derivative (PCBM) as an acceptor and electron transporter. The main drawback of this highly efficient blend is its limited spectral range, covering only a 350–650 nm spectral interval. So the main aim of the present work was to extend the spectral range of the cell up to 850 nm by adding a second bulk heterojunction layer of complementary absorption spe…

PhotocurrentSpin coatingOrganic solar cellbusiness.industryChemistryEnergy conversion efficiencyGeneral Physics and AstronomyPolymer solar celllaw.inventionlawSolar cellOptoelectronicsQuantum efficiencyCharge carrierPhysical and Theoretical ChemistrybusinessChemical Physics
researchProduct

Influence of the Preparation Method on Planar Perovskite CH 3 NH 3 PbI 3-x Cl x Solar Cell Performance and Hysteresis

2017

The present research has been supported by the State Research Programme “LATENERGI” and National Research Programme “Multifunctional Materials and Composites, Photonics and Nanotechnology (IMIS2)”.

Materials scienceQC1-999General Physics and Astronomy02 engineering and technology010402 general chemistryperovskite solar cells7. Clean energy01 natural scienceslaw.inventionPreparation methodplanar heterojunctionPlanarlawSolar cell:NATURAL SCIENCES:Physics [Research Subject Categories]mixed halide cellsPerovskite (structure)inverted structurebusiness.industryPhysicsGeneral EngineeringControl engineering021001 nanoscience & nanotechnologyEngineering physics0104 chemical sciencesHysteresisPhotonics0210 nano-technologybusinessLatvian Journal of Physics and Technical Sciences
researchProduct

Perovskite CH3NH3PbI3–XClx Solar Cells. Experimental Study of Initial Degradation Kinetics and Fill Factor Spectral Dependence

2021

The main drawback of the methylammonium lead halide perovskite solar cells is their degradation in ambient atmosphere. To investigate ambient-air-induced cell degradation, spec-tral dependencies of open-circuit voltage (VOC), fill factor (FF) and the power conversion effi-ciency (PCE) have been acquired (for the first time reported in literature). Our custom-made measurement system allowed us to perform measurements of the above-mentioned entities in situ directly in vacuum during and after thermal deposition of the elec-trode. We also studied how these parameters in vacuum changed after cell exposure to ambient air for 85 min (50 nm top electrode) and for 180 min (100 nm top Ag electrode).…

Degradation kineticsSolid-state physicsQC1-999General Physics and AstronomyDegradation kinetics02 engineering and technology010402 general chemistry01 natural sciences7. Clean energy:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceEuropean unionfill factor spectral dependencePerovskite (structure)media_commonPhysicsHorizon (archaeology)PhysicsEnergy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnologyEngineering physics0104 chemical sciencespower conversion efficiencydegradation kineticslead halide perovskitesolar cellsFill factor0210 nano-technology
researchProduct

PV effect of fullerene/poly(3-hexylthiophene) blend sensitized by phthalocyanine having infrared absorption CT band

2008

An attempt was made to extend the photosensitivity spectral range of fullerene/poly(3-hexylthiophene) blend to NIR region by adding extra electron donor — hydroxygallium phthalocyanine (GaOHPc) with a strong and wide intermolecular charge transfer (CT) band around 830 nm. Multilayer cells of ITO/PEDOT: PSS/6 GaOHPc/P3HT: C61(CO2Et)2 have been prepared by spin coating with vacuum evaporated Al or In top electrodes. Significant photosensitivity of the cells was in 370–900 nm spectral range. However charge carrier photogeneration efficiency was 3 times higher for illumination in P3HT absorption band as compared with the GaOHPc CT band at 830 nm. But when GaOHPc was mixed in the blend forming P…

Spin coatingMaterials sciencebusiness.industryPhotochemistryPolymer solar cellchemistry.chemical_compoundPhotosensitivityPEDOT:PSSchemistryAbsorption bandPhthalocyanineOptoelectronicsQuantum efficiencyCharge carrierbusiness
researchProduct

PV and magnetic field effects in poly(3-hexylthiophene)-fullerene cells doped with phthalocyanine soluble derivative

2007

An attempt was made to widen the photosensitivity spectral range of poly(3-hexylthiophene)-fullerene blend by adding an extra electron donor — a newly synthesized soluble phthalocyanine derivative (SnClPc) having the electron absorption band at 708 nm. As the electron acceptor, home-synthesised di(ethoxycarbonyl) methano-fullerene carboxylate (C 61 (CO 2 Et) 2 ) was used, and as the hole transporter — the regioregular poly 3-hexylthiophene (P3HT). The sandwich-type samples were prepared on an ITO glass substrate by coating it with a 30–50 nm thick PEDOT:PSS layer followed by a ~100 nm thick P3HT:C 61 (CO 2 Et) 2 :SnClPc blend. For the top electrodes In or Au were used. Spectral dependences …

Photocurrentchemistry.chemical_classificationChemistryDopingAnalytical chemistryElectron acceptorCondensed Matter PhysicsElectronic Optical and Magnetic Materialschemistry.chemical_compoundPhotosensitivityPEDOT:PSSAbsorption bandPhthalocyanineOrganic chemistryQuantum efficiencyInstrumentationThe European Physical Journal Applied Physics
researchProduct

Perovskite CH3NH3PbI3–XClx Solar Cells and their Degradation (Part 1: A Short Review)

2021

Development of hybrid organic-inorganic perovskite solar cells (PSC) has been one of the hottest research topics since 2013. Within brief literature review, we would like to achieve two objectives. Firstly, we would like to indicate that a whole set of physical properties, such as high change carrier mobility, very low recombination rates, large carrier life time and diffu-sion length, large absorption coefficients and very weak exciton binding energies, are defining high power conversion efficiency (PCE) of methyl ammonium lead trihalide SC. The second objective is to draw attention to some, in our opinion, important aspects that previously have not been satisfactory addressed in literatur…

PhysicsHorizon (archaeology)Solid-state physicsPhysicsQC1-999General EngineeringGeneral Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyEngineering physics0104 chemical sciencespower conversion efficiencylead halide perovskiteinverted solar cells:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceInverted solar cellsEuropean union0210 nano-technologyPerovskite (structure)media_common
researchProduct