0000000000241171

AUTHOR

Stephan Macher-goeppinger

Neutral pH and low–glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis

WOS: 000439138700024 PubMed ID: 29776755 The effect of peritoneal dialysates with low-glucose degradation products on peritoneal membrane morphology is largely unknown, with functional relevancy predominantly derived from experimental studies. To investigate this, we performed automated quantitative histomorphometry and molecular analyses on 256 standardized peritoneal and 172 omental specimens from 56 children with normal renal function, 90 children with end-stage kidney disease at time of catheter insertion, and 82 children undergoing peritoneal dialysis using dialysates with low-glucose degradation products. Follow-up biopsies were obtained from 24 children after a median peritoneal dial…

research product

p38 MAPK Controls Prothrombin Expression by Regulated RNA 3′ End Processing

Thrombin is a key protease involved in blood coagulation, complement activation, inflammation, angiogenesis, and tumor invasion. Although induced in many (patho-)physiological conditions, the underlying mechanisms controlling prothrombin expression remained enigmatic. We have now discovered that prothrombin expression is regulated by a posttranscriptional regulatory mechanism responding to stress and inflammation. This mechanism is triggered by external stimuli that activate p38 MAPK. In turn, p38 MAPK upmodulates canonical 3' end processing components and phosphorylates the RNA-binding proteins FBP2 and FBP3, which inhibit 3' end processing of mRNAs, such as prothrombin mRNA, that bear a d…

research product

PCF11 links alternative polyadenylation to formation and spontaneous regression of neuroblastoma

AbstractDiversification at the transcriptome 3’end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. However the underlying mechanisms and functional consequences are poorly defined. Here, we identify extensive transcriptome-3’end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome-3’end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including…

research product

Complement Activation in Peritoneal Dialysis–Induced Arteriolopathy

Cardiovascular disease (CVD) is the leading cause of increased mortality in patients with CKD and is further aggravated by peritoneal dialysis (PD). Children are devoid of preexisting CVD and provide unique insight into specific uremia- and PD-induced pathomechanisms of CVD. We obtained peritoneal specimens from children with stage 5 CKD at time of PD catheter insertion (CKD5 group), children with established PD (PD group), and age-matched nonuremic controls (n=6/group). We microdissected omental arterioles from tissue layers not directly exposed to PD fluid and used adjacent sections of four arterioles per patient for transcriptomic and proteomic analyses. Findings were validated in omenta…

research product