0000000000241655
AUTHOR
Olivier Limousin
Conceptual design of the International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…
The Large Area Detector onboard the eXTP mission
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, a…
Monte Carlo evaluation of a CZT 3D spectrometer suitable for a Hard X- and soft-γ rays polarimetry balloon borne experiment
Today, the measurement of the polarization status of cosmic sources high-energy' emission, is recognized as a key observational parameter to understand the active production mechanism and its geometry. Therefore, a mandatory requirement for new instrumentations operating in this energ.-y range will be to provide high sensitivity for polarimetric measurements. In this framework, we have presented the concept of a small high-performance imaging spectrometer optimized for polarimetry between 100 and 600 keV suitable for a stratospheric balloon-borne payload and as a pathfinder for a future satellite mission. The detector with 3D spatial resolution is based on a CZT spectrometer in a highly seg…
The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)
Çetin, Serkant Ali (Dogus Author) -- Conference full title: 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013; Asilomar Conference Grounds Monterey Peninsula; United States; 8 September 2013 through 13 September 2013. The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 - 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10-12 GeV-1 for a wide range of axion masses up to ∼ 0.25 eV. This is an improvement over the currently best …
Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory
International audience; More than 80 years after the postulation of dark matter, its nature remains one of the fundamental questions in cosmology. Axions are currently one of the leading candidates for the hypothetical, non-baryonic dark matter that is expected to account for about 25% of the energy density of the Universe. Especially in the light of the Large Hadron Collider at CERN slowly closing in on Weakly-Interacting Massive Particle (WIMP) searches, axions and axion-like particles (ALPs) provide a viable alternative approach to solving the dark matter problem. The fact that makes them particularly appealing is that they were initially introduced to solve a long-standing problem in qu…
The enhanced X-ray Timing and Polarimetry mission—eXTP
In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to det…
Recent trends in the development of CdTe and CdZnTe semiconductor detectors for astrophysical applications
Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) offer great promise as x-ray and gamma ray detectors. Due to the high detection efficiency, the good room temperature performance and the recent improvements on crystal growth technology, CdTe and CdZnTe detectors have obtained an increasing interest in the field of hard x-ray and gamma ray astronomy. In this paper, we report on the R&D activities on CdTe and CdZnTe detectors for high energy space instrumentation. Our group has been involved in the design of new multilayer hard x and soft gamma ray Laue lens telescopes and, in particular on the development of focal plane detectors based on CdTe and CdZnTe. Here we present the acti…
The Large Area Detector onboard the eXTP mission
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…