0000000000241943
AUTHOR
Jeffrey Ecsedy
The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells
In this study, we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces stabilization and accumulation of Aurora-A mitotic kinase that ultimately drives the transition from an epithelial to a highly invasive mesenchymal phenotype in estrogen receptor α-positive (ERα(+)) breast cancer cells. The transition from an epithelial- to a mesenchymal-like phenotype was characterized by reduced expression of ERα, HER-2/Neu overexpression and loss of CD24 surface receptor (CD24(-/low)). Importantly, expression of key epithelial-to-mesenchymal transition (EMT) markers and upregulation of the stemness gene SOX2 was linked to acquisition of stem cell-like properties such as the ab…
Phase I Pharmacokinetic/Pharmacodynamic Study of MLN8237, an Investigational, Oral, Selective Aurora A Kinase Inhibitor, in Patients with Advanced Solid Tumors
Abstract Purpose: Aurora A kinase (AAK) is a key regulator of mitosis and a target for anticancer drug development. This phase I study investigated the safety, pharmacokinetics, and pharmacodynamics of MLN8237 (alisertib), an investigational, oral, selective AAK inhibitor, in 59 adults with advanced solid tumors. Experimental Design: Patients received MLN8237 once daily or twice daily for 7, 14, or 21 consecutive days, followed by 14 days recovery, in 21-, 28-, or 35-day cycles. Dose-limiting toxicities (DLT) and the maximum-tolerated dose (MTD) for the 7- and 21-day schedules were determined. Pharmacokinetic parameters were derived from plasma concentration–time profiles. AAK inhibition in…
Phase I Assessment of New Mechanism-Based Pharmacodynamic Biomarkers for MLN8054, a Small-Molecule Inhibitor of Aurora A Kinase
Abstract The mitotic kinase Aurora A is an important therapeutic target for cancer therapy. This study evaluated new mechanism-based pharmacodynamic biomarkers in cancer patients in two phase I studies of MLN8054, a small-molecule inhibitor of Aurora A kinase. Patients with advanced solid tumors received MLN8054 orally for 7 consecutive days in escalating dose cohorts, with skin and tumor biopsies obtained before and after dosing. Skin biopsies were evaluated for increased mitotic cells within the basal epithelium. Tumor biopsies were assessed for accumulation of mitotic cells within proliferative tumor regions. Several patients in the highest dose cohorts showed marked increases in the ski…