0000000000242005

AUTHOR

José E. González-zamora

showing 2 related works from this author

Toxicity of several d-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain

2005

Abstract Toxicity and larval growth inhibition of 11 insecticidal proteins of Bacillus thuringiensis were evaluated against neonate larvae of Helicoverpa armigera, a major pest of important crops in Spain and other countries, by a whole-diet contamination method. The most active toxins were Cry1Ac4 and Cry2Aa1, with LC50 values of 3.5 and 6.3 μg/ml, respectively. At the concentrations tested, Cry1Ac4, Cry2Aa1, Cry9Ca, Cry1Fa1, Cry1Ab3, Cry2Ab2, Cry1Da, and Cry1Ja1, produced a significant growth inhibition, whereas Cry1Aa3, Cry1Ca2, and Cry1Ea had no effect.

Veterinary medicineBiological pest controlBacillus thuringiensisHelicoverpa armigeraLepidoptera genitaliachemistry.chemical_compoundHelicoverpa armigeraBacillus thuringiensisBotanyAnimalsPest Control BiologicalEcology Evolution Behavior and SystematicsbiologyfungiICPbiology.organism_classificationEndotoxinsLepidopteraBiopesticideMicrobial insect controlchemistrySpainGrowth inhibitionLarvaNoctuidaeCotton pestsCry toxinsPEST analysisGrowth inhibition
researchProduct

Lack of Detrimental Effects of Bacillus thuringiensis Cry Toxins on the Insect Predator Chrysoperla carnea : a Toxicological, Histopathological, and …

2006

ABSTRACT The effect of Cry proteins of Bacillus thuringiensis on the green lacewing ( Chrysoperla carnea ) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific bind…

InsectanoctuidaeBacterial ToxinsBacillus thuringiensisHelicoverpa armigeraApplied Microbiology and BiotechnologyHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyExiguaInvertebrate MicrobiologyAnimalsBioassaycrystal proteinsPest Control BiologicalChrysoperla carnealarval midgutBacillus thuringiensis ToxinsMicrovilliEcologybiologybinding-sitesfungitoxicityMidgutbiology.organism_classificationspodoptera-exiguaEndotoxinsPRI BioscienceBiochemistryCry1Acmaize expressing cry1abNoctuidaeDigestive Systemborder membrane-vesicleshelicoverpa-armigera lepidopteraFood ScienceBiotechnologyresistant transgenic plants
researchProduct