0000000000242073
AUTHOR
Miriana Scordino
Protective, antioxidant and antiproliferative activity of grapefruit integropectin on sh-sy5y cells
Tested in vitro on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful protective, antioxidant and antiproliferative agent. The strong antioxidant properties of this new citrus pectin, and its ability to preserve mitochondrial membrane potential and morphology, severely impaired in neurodegenerative disorders, make it an attractive therapeutic and preventive agent for the treatment of oxidative stress-associated brain disorders. Similarly, the ability of this pectic polymer rich in RG-I regions, as well as in naringin, linalool, linalool oxide and limonene adsorbed at the outer surface, to inhibit cell proliferation or even kill, at high doses, neoplastic cells may have open…
Neuroprotective and Mitoprotective Effects of Lemon IntegroPectin on SH-SY5Y Cells
AbstractLemon IntegroPectin obtained via hydrodynamic cavitation of organic lemon processing waste in water shows significant neuroprotective activity in vitro, as first reported in this study investigating the effects of both lemon IntegroPectin and commercial citrus pectin on cell viability, cell morphology, reactive oxygen species (ROS) production and mitochondria perturbation induced by treatment of neuronal SH-SY5Y human cells with H2O2. Mediated by ROS including H2O2 and its derivatives, oxidative stress alters numerous cellular processes, including mitochondrial regulation and cell signaling, propagating cellular injury that leads to incurable neurodegenerative diseases. These result…
New neuroprotective effect of lemon integropectin on neuronal cellular model
Lemon IntegroPectin obtained via hydrodynamic cavitation of organic lemon processing waste in water shows significant neuroprotective activity in vitro, as first reported in this study investigating the effects of both lemon IntegroPectin and commercial citrus pectin on cell viability, cell morphology, reactive oxygen species (ROS) production, and mitochondria perturbation induced by treatment of neuronal SH-SY5Y human cells with H2O2. Mediated by ROS, including H2O2 and its derivatives, oxidative stress alters numerous cellular processes, such as mitochondrial regulation and cell signaling, propagating cellular injury that leads to incurable neurodegenerative diseases. These results, and t…
Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects
The differentiation of neural progenitors is a complex process that integrates different signals to drive transcriptional changes, which mediate metabolic, electrophysiological, and morphological cellular specializations. Understanding these adjustments is essential within the framework of stem cell and cancer research and therapy. Human neuroblastoma SH-SY5Y cells, widely used in neurobiology research, can be differentiated into neuronal-like cells through serum deprivation and retinoic acid (RA) supplementation. In our study, we observed that the differentiation process triggers the expression of Heat Shock Protein 70 (HSP70). Notably, inhibition of HSP70 expression by KNK437 causes a dra…
Guanosine modulates K+ membrane currents in SH-SY5Y cells: involvement of adenosine receptors
AbstractGuanosine (GUO), widely considered a key signaling mediator, is implicated in the regulation of several cellular processes. While its interaction with neural membranes has been described, GUO still is an orphan neuromodulator. It has been postulated that GUO may eventually interact with potassium channels and adenosine (ADO) receptors (ARs), both particularly important for the control of cellular excitability. Accordingly, here, we investigated the effects of GUO on the bioelectric activity of human neuroblastoma SH-SY5Y cells by whole-cell patch-clamp recordings. We first explored the contribution of voltage-dependent K+ channels and, besides this, the role of ARs in the regulation…
Neuroprotective, antioxidant and antiproliferative activity of grapefruit IntegroPectin on SH-SY5Y cells
AbstractTested in vitro on SH-SY5Y neuroblastoma cells, grapefruit IntegroPectin is a powerful neuroprotective, antioxidant and antiproliferative agent. The strong antioxidant properties of grapefruit IntegroPectin, and its ability to preserve mitochondrial membrane potential and morphology, severely impaired in neurodegenerative disorders, make this new biopolymer highly soluble in water an attractive therapeutic agent for oxidative stress-associated brain disorders. Similarly, the ability of this new citrus pectin rich in naringin, linalool, linalool oxide and limonene adsorbed at the outer surface to inhibit cell proliferation or even kill, at high doses, neoplastic cells, coupled to its…
Neuroprotective and Antioxidant Role of Oxotremorine-M, a Non-selective Muscarinic Acetylcholine Receptors Agonist, in a Cellular Model of Alzheimer Disease.
AbstractAlzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and …