0000000000242684
AUTHOR
Maha Abdelhaq
Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction
A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network’s security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network’s integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemen…
A Computationally Efficient Online/Offline Signature Scheme for Underwater Wireless Sensor Networks
Underwater wireless sensor networks (UWSNs) have emerged as the most widely used wireless network infrastructure in many applications. Sensing nodes are frequently deployed in hostile aquatic environments in order to collect data on resources that are severely limited in terms of transmission time and bandwidth. Since underwater information is very sensitive and unique, the authentication of users is very important to access the data and information. UWSNs have unique communication and computation needs that are not met by the existing digital signature techniques. As a result, a lightweight signature scheme is required to meet the communication and computation requirements. In this researc…