0000000000243091

AUTHOR

Florence Bouyer

showing 4 related works from this author

Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level

2011

International audience; TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which ma…

MESH: CASP8 and FADD-Like Apoptosis Regulating ProteinMESH : Antineoplastic Combined Chemotherapy ProtocolsCASP8 and FADD-Like Apoptosis Regulating ProteinTRAILApoptosisMESH : Models BiologicalMitochondrionMESH : RNA Small InterferingMESH: Caspase 8TNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandMESH : Tumor Necrosis Factor Decoy Receptors0302 clinical medicineRNA interferenceNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsMESH: RNA Small InterferingMESH: NeoplasmsRNA Small InterferingReceptorSensitizationCaspase 80303 health sciencesMESH : Caspase 8MESH: Drug Resistance Neoplasm3. Good healthCell biologyMESH: Antineoplastic Combined Chemotherapy ProtocolsMESH : Drug Resistance Neoplasmmedicine.anatomical_structure030220 oncology & carcinogenesisRNA InterferenceMESH : GPI-Linked ProteinsMESH: TNF-Related Apoptosis-Inducing LigandDeath Domain Receptor Signaling Adaptor ProteinsProgrammed cell deathMESH: Cell Line Tumorc-FLIPMESH: RNA InterferenceBiologyGPI-Linked ProteinsCaspase 8Models Biological03 medical and health sciencesCell Line TumorReceptors Tumor Necrosis Factor Member 10cmedicineTRAIL-R4HumanscancerChemotherapy[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing Ligand[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyOriginal PaperMESH: HumansMESH : Cell Line TumorMESH: ApoptosisMESH : HumansMESH: Models BiologicalMESH : CASP8 and FADD-Like Apoptosis Regulating ProteinCell BiologyMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : NeoplasmsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsDrug Resistance NeoplasmApoptosisMESH : RNA InterferenceMESH: GPI-Linked ProteinsMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsMESH: Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy Receptors
researchProduct

Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy

2008

Cancer chemotherapy can induce tumor regression followed, in many cases, by relapse in the long-term. Thus this study was performed to assess the determinants of such phenomenon using an in vivo cancer model and in vitro approaches. When animals bearing an established tumor are treated by cisplatin, the tumor initially undergoes a dramatic shrinkage and is characterized by giant tumor cells that do not proliferate but maintain DNA synthesis. After several weeks of latency, the tumor resumes its progression and consists of small proliferating cells. Similarly, when tumor cells are exposed in vitro to pharmacological concentrations of cisplatin, mitotic activity stops initially but cells main…

CisplatinCell BiologyGeneral MedicineBiologyMolecular biologyDNA endoreduplicationGiant cellCancer researchmedicineCytotoxic T cellEndoreduplicationClonogenic assayMitosisMitotic catastrophemedicine.drugCell Biology International
researchProduct

cis-Dichloroplatinum(II) complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-ones: Synthesis and cytotoxicity in human cancer cell lines in vitro

2013

A novel family of cisplatin-type complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-one topoisomerase inhibitor via a polymethylene chain and their nonplatinated counterparts were prepared. Their potential cytotoxicity was assessed in three human colorectal cancer cell lines HCT 116, SW480 and HT-29 and compared to the reference molecules cisplatin and oxaliplatin. Platinated compounds were poorly active whilst nonplatinated dibenzo[c,h][1,6]naphthyridin-6-one moieties exhibited higher cytotoxic properties than cisplatin and oxaliplatin whatever the length of the polymethylene chain; molecules containing the tri- and hexamethylene chain length were the most cytotoxic.

Organoplatinum Compoundsmedicine.drug_classStereochemistryAntineoplastic AgentsStructure-Activity RelationshipCell Line TumorDrug DiscoverymedicineHumansCytotoxic T cellMoleculeNaphthyridinesCytotoxicityCell ProliferationPharmacologyCisplatinDose-Response Relationship DrugMolecular StructureChemistryOrganic ChemistryGeneral MedicineHCT116 CellsIn vitroOxaliplatinCell cultureDrug Screening Assays AntitumorHT29 CellsTopoisomerase inhibitormedicine.drugEuropean Journal of Medicinal Chemistry
researchProduct

Optimization of MCM-41 type silica nanoparticles for biological applications: Control of size and absence of aggregation and cell cytotoxicity

2015

Abstract Mesoporous silica nanoparticles were synthesized at high pH using CTAB as a template and TEOS as a silica precursor. It was shown that varying the NaOH concentration between 5 and 27.5 mM allows the size, pore and silica structure of mesoporous nanoparticles to be precisely tuned. In particular, monodisperse nanoparticles with the MCM-41 structure with size ranging from 90 nm to 450 nm were obtained by increasing the NaOH concentration from 12.5 to 22.5 mM. It thus demonstrates that NaOH concentration must range between 12.5 and 15 mM in order to prepare MCM-41 silica nanoparticles with optimal size for nanovectorization. We also found that under usual conditions the aggregation of…

Materials scienceDispersityExtraction (chemistry)NanoparticleMesoporous silicaCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuspension (chemistry)symbols.namesakeChemical engineeringMCM-41Materials ChemistryCeramics and CompositessymbolsOrganic chemistryRaman spectroscopyMesoporous materialJournal of Non-Crystalline Solids
researchProduct