0000000000245547
AUTHOR
Laurianne Paris
Transcriptomic and proteomic responses of Microbacterium sp. C448 exposed to sulfamethazine antibiotic
International audience; The Microbacterium sp. C448 was isolated from a soil regularly exposed to sulfamethazine(SMZ), for its ability to partly mineralise this antibiotic and other related sulfonamides.The aim of our study was to explore its metabolic adaptation towards exposure to SMZenvironmental (10 mg/L) and medicinal (250 mg/L) concentrations. Its transcriptomic andproteomic responses were analysed by focusing on the degradation regulon (sad genes) andresistance genes (folP and sul1).The transcriptomic and proteomic results were essentially congruent whatever theconcentrations tested. In culture conditions, exposure to the highest concentration of SMZ led tothe highest sad expression …
Antibiotrophy: Key Function for Antibiotic-Resistant Bacteria to Colonize Soils—Case of Sulfamethazine-Degrading Microbacterium sp. C448
Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Micro…
Metabolic response of Microbacterium sp. C448 exposed to environmental and medicinal concentrations of sulfamethazine antibiotic
International audience
Contrasting Effects of Environmental Concentrations of Sulfonamides on Microbial Heterotrophic Activities in Freshwater Sediments
The sulfonamide antibiotics sulfamethoxazole (SMX) and sulfamethazine (SMZ) are regularly detected in surface sediments of contaminated hydrosystems, with maximum concentrations that can reach tens of μg kg–1 in stream and river sediments. Little is known about the resulting effects on the exposed benthic organisms. Here we investigated the functional response of stream sediment microbial communities exposed for 4 weeks to two levels of environmentally relevant concentrations of SMX and SMZ, tested individually. To this end, we developed a laboratory channel experiment where natural stream sediments were immersed in water contaminated with nominal environmental concentrations of 500 and 5,0…