0000000000246470

AUTHOR

D. Jonsson

showing 2 related works from this author

Ab initio calculations of zero-field splitting parameters in linear polyacenes

2003

Abstract The results of ab initio calculations of zero-field splitting (ZFS) parameters are presented for the linear polyacenes from benzene to pentacene. We show how the electron spin–spin (SS) parameters can be efficiently obtained from restricted high-spin open-shell wave functions (ROHF), and present calculations of these, comparing with the results of a recent multi-configurational self-consistent field approach. The SS parameters are obtained from electron SS coupling strengths evaluated as expectation values over the wave functions and from state-to-state spin–orbit (SO) interactions. The results for the two lowest triplet states of naphthalene demonstrate that excellent values can b…

Electronic correlationField (physics)Condensed matter physicsChemistryGeneral Physics and AstronomyZero field splittingMolecular physicsAb initio quantum chemistry methodsSinglet statePhysics::Chemical PhysicsPhysical and Theoretical ChemistryTriplet stateWave functionSpin (physics)Chemical Physics
researchProduct

A comparison of density-functional-theory and coupled-cluster frequency-dependent polarizabilities and hyperpolarizabilities

2005

The frequency-dependent polarizabilities and hyperpolarizabilities of HF, CO, H2O and para-nitroaniline calculated by density-functional theory are compared with accurate coupled-cluster results. Whereas the local-density approximation and the generalized gradient approximation (BLYP) perform very similarly and overestimate polarizabilities and, in particular, the hyperpolarizabilities, hybrid density-functional theory (B3LYP) performs better and produces results similar to those obtained by coupled-cluster singles-and-doubles theory. Comparisons are also made for singlet excitation energies, calculated using linear response theory.

PhysicsBiophysicsHartree–Fock methodCondensed Matter PhysicsPara-nitroanilineMolecular physicsGeneralized gradientCoupled clusterQuantum mechanicsPhysics::Atomic and Molecular ClustersDensity functional theoryPhysics::Atomic PhysicsSinglet statePhysics::Chemical PhysicsPhysical and Theoretical ChemistryMolecular BiologyLinear response theoryExcitationMolecular Physics
researchProduct